Journal of Neural Transmission

, Volume 116, Issue 5, pp 615–622 | Cite as

N-methyl-d-aspartate 2b receptor subtype (NR2B) promoter methylation in patients during alcohol withdrawal

  • Teresa Biermann
  • Udo Reulbach
  • Bernd Lenz
  • Helge Frieling
  • Marc Muschler
  • Thomas Hillemacher
  • Johannes Kornhuber
  • Stefan Bleich
Basic Neurosciences, Genetics and Immunology - Original Article

Abstract

NMDA receptors and especially the NR2B receptor subtype play a crucial role during chronic ethanol consumption and alcohol withdrawal. Therefore, the NR2B receptor subtype expression in peripheral blood cells of 32 male patients suffering from alcohol dependency were assessed through quantitative RT-PCR and to explore regulating epigenetic mechanisms, a methylation analysis was conducted using bisulfite sequencing of a fragment of the NR2B promoter region. The expression of the NR2B receptor increased significantly during the first 24 h of withdrawal treatment (day 1; t = 4.1, P = 0.001), and also on and day 3 (t = 2.4; P = 0.029). The severity of alcohol drinking pattern, measured by lifetime drinking and daily ethanol intake, was negatively correlated with the methylation of a defined cluster of five CPG-sites within the NR2B promoter (lifetime drinking: Spearman’s rho = −0.55; P = 0.013; daily ethanol intake: rho = −0.46; P = 0.043). These findings might explain the observation of an impact of alcohol consumption patterns on the gravity of withdrawal symptoms.

Keywords

Alcoholism NR2B receptor DNA methylation mRNA Alcohol withdrawal 

References

  1. Abdolmaleky HM, Cheng KH, Faraone SV, Wilcox M, Glatt SJ, Gao F, Smith CL, Shafa R, Aeali B, Carnevale J, Pan H, Papageorgis P, Ponte JF, Sivaraman V, Tsuang MT, Thiagalingam S (2006) Hypomethylation of MB-COMT promoter is a major risk factor for schizophrenia and bipolar disorder. Hum Mol Genet 15:3132–3145PubMedCrossRefGoogle Scholar
  2. Biermann T, Bonsch D, Reulbach U, Kornhuber J, Bleich S (2007) Dopamine and N-methyl-d-aspartate receptor expression in peripheral blood of patients undergoing alcohol withdrawal. J Neural Transm 114:1081–1084PubMedCrossRefGoogle Scholar
  3. Bleich S, Kornhuber J (2005) Part III. Schizophrenia: glutamate and schizophrenia and the N-methyl-d-aspartate receptor hypofunction hypothesis. In: Schmidt WJ, Reith MEA (eds) Dopamine and glutamate in psychiatric disorders. Humana Press, Totowa, pp 169–179Google Scholar
  4. Bleich S, Bandelow B, Javaheripour K, Muller A, Degner D, Wilhelm J, Havemann-Reinecke U, Sperling W, Ruther E, Kornhuber J (2003) Hyperhomocysteinemia as a new risk factor for brain shrinkage in patients with alcoholism. Neurosci Lett 335:179–182PubMedCrossRefGoogle Scholar
  5. Bleich S, Lenz B, Ziegenbein M, Beutler S, Frieling H, Kornhuber J, Bonsch D (2006) Epigenetic DNA hypermethylation of the HERP gene promoter induces down-regulation of its mRNA expression in patients with alcohol dependence. Alcohol Clin Exp Res 30:587–591PubMedCrossRefGoogle Scholar
  6. Bock C, Lengauer T (2008) Computational epigenetics. Bioinformatics 24:1–10PubMedCrossRefGoogle Scholar
  7. Bock C, Reither S, Mikeska T, Paulsen M, Walter J, Lengauer T (2005) BiQ Analyzer: visualization and quality control for DNA methylation data from bisulfite sequencing. Bioinformatics 21:4067–4068PubMedCrossRefGoogle Scholar
  8. Bonsch D, Lenz B, Kornhuber J, Bleich S (2005) DNA hypermethylation of the alpha synuclein promoter in patients with alcoholism. Neuroreport 16:167–170PubMedCrossRefGoogle Scholar
  9. Calton JL, Wilson WA, Moore SD (1999) Reduction of voltage-dependent currents by ethanol contributes to inhibition of NMDA receptor-mediated excitatory synaptic transmission. Brain Res 816:142–148PubMedCrossRefGoogle Scholar
  10. Carpenter-Hyland EP, Chandler LJ (2007) Adaptive plasticity of NMDA receptors and dendritic spines: implications for enhanced vulnerability of the adolescent brain to alcohol addiction. Pharmacol Biochem Behav 86:200–208PubMedCrossRefGoogle Scholar
  11. Comb M, Goodman HM (1990) CpG methylation inhibits proenkephalin gene expression and binding of the transcription factor AP-2. Nucleic Acids Res 18:3975–3982PubMedCrossRefGoogle Scholar
  12. Czermak C, Lehofer M, Wagner EM, Prietl B, Lemonis L, Rohrhofer A, Schauenstein K, Liebmann PM (2004) Reduced dopamine D4 receptor mRNA expression in lymphocytes of long-term abstinent alcohol and heroin addicts. Addiction 99:251–257PubMedCrossRefGoogle Scholar
  13. Darstein MB, Landwehrmeyer GB, Feuerstein TJ (2000) Changes in NMDA receptor subunit gene expression in the rat brain following withdrawal from forced long-term ethanol intake. Naunyn Schmiedebergs Arch Pharmacol 361:206–213PubMedCrossRefGoogle Scholar
  14. De Witte P, Pinto E, Ansseau M, Verbanck P (2003) Alcohol and withdrawal: from animal research to clinical issues. Neurosci Biobehav Rev 27:189–197PubMedCrossRefGoogle Scholar
  15. Dodd PR, Foley PF, Buckley ST, Eckert AL, Innes DJ (2004) Genes and gene expression in the brain of the alcoholic. Addict Behav 29:1295–1309PubMedCrossRefGoogle Scholar
  16. Fadda F, Rossetti ZL (1998) Chronic ethanol consumption: from neuroadaptation to neurodegeneration. Prog Neurobiol 56:385–431PubMedCrossRefGoogle Scholar
  17. Ferreira VM, Frausto S, Browning MD, Savage DD, Morato Gs, Valenzuela CF (2001) Ionotropic glutamate receptor subunit expression in the rat hippocampus: lack of an effect of a long-term ethanol exposure paradigm. Alcohol Clin Exp Res 25:1536–1541PubMedCrossRefGoogle Scholar
  18. Follesa P, Ticku MK (1995) Chronic ethanol treatment differentially regulates NMDA receptor subunit mRNA expression in rat brain. Brain Res Mol Brain Res 29:99–106PubMedCrossRefGoogle Scholar
  19. Frieling H, Bleich S, Otten J, Romer KD, Kornhuber J, de Zwaan M, Jacoby GE, Wilhelm J, Hillemacher T (2008) Epigenetic Downregulation of Atrial Natriuretic Peptide but not Vasopressin mRNA Expression in Females with Eating Disorders is Related to Impulsivity. NeuropsychopharmacologyGoogle Scholar
  20. Grant KA, Lovinger DM (1995) Cellular and behavioral neurobiology of alcohol: receptor-mediated neuronal processes. Clin Neurosci 3:155–164PubMedGoogle Scholar
  21. Hillemacher T, Frieling H, Muschler MA, Bleich S (2007) Homocysteine and epigenetic DNA methylation: a biological model for depression? Am J Psychiatry 164:1610PubMedCrossRefGoogle Scholar
  22. Hillemacher T, Frieling H, Hartl T, Wilhelm J, Kornhuber J, Bleich S (2008a) Promoter specific methylation of the dopamine transporter gene is altered in alcohol dependence and associated with craving. J Psychiatr Res 43:388–392PubMedCrossRefGoogle Scholar
  23. Hillemacher T, Frieling H, Luber K, Yazici A, Muschler MA, Lenz B, Wilhelm J, Kornhuber J, Bleich S (2008b) Epigenetic regulation and gene expression of vasopressin and atrial natriuretic peptide in alcohol withdrawal. PsychoneuroendocrinologyGoogle Scholar
  24. Hu XJ, Follesa P, Ticku MK (1996) Chronic ethanol treatment produces a selective upregulation of the NMDA receptor subunit gene expression in mammalian cultured cortical neurons. Brain Res Mol Brain Res 36:211–218PubMedCrossRefGoogle Scholar
  25. Kalluri HS, Mehta AK, Ticku MK (1998) Up-regulation of NMDA receptor subunits in rat brain following chronic ethanol treatment. Brain Res Mol Brain Res 58:221–224PubMedCrossRefGoogle Scholar
  26. Kim MS, Yamashita K, Baek JH, Park HL, Carvalho AL, Osada M, Hoque MO, Upadhyay S, Mori M, Moon C, Sidransky D (2006) N-methyl-d-aspartate receptor type 2B is epigenetically inactivated and exhibits tumor-suppressive activity in human esophageal cancer. Cancer Res 66:3409–3418PubMedCrossRefGoogle Scholar
  27. Lewin J, Schmitt AO, Adorjan P, Hildmann T, Piepenbrock C (2004) Quantitative DNA methylation analysis based on four-dye trace data from direct sequencing of PCR amplificates. Bioinformatics 20:3005–3012PubMedCrossRefGoogle Scholar
  28. Li C, Peoples RW, Weight FF (1994) Alcohol action on a neuronal membrane receptor: evidence for a direct interaction with the receptor protein. Proc Natl Acad Sci USA 91:8200–8204PubMedCrossRefGoogle Scholar
  29. Lipton SA, Rosenberg PA (1994) Excitatory amino acids as a final common pathway for neurologic disorders. N Engl J Med 330:613–622PubMedCrossRefGoogle Scholar
  30. Little HJ (1999) The contribution of electrophysiology to knowledge of the acute and chronic effects of ethanol. Pharmacol Ther 84:333–353PubMedCrossRefGoogle Scholar
  31. Littleton J (2001) Receptor regulation as a unitary mechanism for drug tolerance and physical dependence—not quite as simple as it seemed!. Addiction 96:87–101PubMedCrossRefGoogle Scholar
  32. Lynch DR, Anegawa NJ, Verdoorn T, Pritchett DB (1994) N-methyl-d-aspartate receptors: different subunit requirements for binding of glutamate antagonists, glycine antagonists, and channel-blocking agents. Mol Pharmacol 45:540–545PubMedGoogle Scholar
  33. Maler JM, Esselmann H, Wiltfang J, Kunz N, Lewczuk P, Reulbach U, Bleich S, Ruther E, Kornhuber J (2005) Memantine inhibits ethanol-induced NMDA receptor up-regulation in rat hippocampal neurons. Brain Res 1052:156–162PubMedCrossRefGoogle Scholar
  34. McGowan PO, Sasaki A, Huang TC, Unterberger A, Suderman M, Ernst C, Meaney MJ, Turecki G, Szyf M (2008) Promoter-wide hypermethylation of the ribosomal RNA gene promoter in the suicide brain. PLoS ONE 3:e2085PubMedCrossRefGoogle Scholar
  35. Nagy J, Kolok S, Boros A, Dezso P (2005) Role of altered structure and function of NMDA receptors in development of alcohol dependence. Curr Neuropharmacol 3:281–297PubMedCrossRefGoogle Scholar
  36. Nan X, Campoy FJ, Bird A (1997) MeCP2 is a transcriptional repressor with abundant binding sites in genomic chromatin. Cell 88:471–481PubMedCrossRefGoogle Scholar
  37. Popp RL, Lickteig R, Browning MD, Lovinger DM (1998) Ethanol sensitivity and subunit composition of NMDA receptors in cultured striatal neurons. Neuropharmacology 37:45–56PubMedCrossRefGoogle Scholar
  38. Qiang M, Denny AD, Ticku MK (2007) Chronic intermittent ethanol treatment selectively alters N-methyl-d-aspartate receptor subunit surface expression in cultured cortical neurons. Mol Pharmacol 72:95–102PubMedCrossRefGoogle Scholar
  39. Razin A, Riggs AD (1980) DNA methylation and gene function. Science 210:604–610PubMedCrossRefGoogle Scholar
  40. Rodenhiser D, Mann M (2006) Epigenetics and human disease: translating basic biology into clinical applications. CMAJ 174:341–348PubMedGoogle Scholar
  41. Self DW, Nestler EJ (1995) Molecular mechanisms of drug reinforcement and addiction. Annu Rev Neurosci 18:463–495PubMedCrossRefGoogle Scholar
  42. Szyf M, McGowan P, Meaney MJ (2008) The social environment and the epigenome. Environ Mol Mutagen 49:46–60PubMedCrossRefGoogle Scholar
  43. Tsai GE, Ragan P, Chang R, Chen S, Linnoila VM, Coyle JT (1998) Increased glutamatergic neurotransmission and oxidative stress after alcohol withdrawal. Am J Psychiatry 155:726–732PubMedGoogle Scholar
  44. Wong SM, Tauck DL, Fong EG, Kendig JJ (1998) Glutamate receptor-mediated hyperexcitability after ethanol exposure in isolated neonatal rat spinal cord. J Pharmacol Exp Ther 285:201–207PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Teresa Biermann
    • 1
  • Udo Reulbach
    • 1
    • 2
  • Bernd Lenz
    • 1
  • Helge Frieling
    • 1
  • Marc Muschler
    • 3
  • Thomas Hillemacher
    • 3
  • Johannes Kornhuber
    • 1
  • Stefan Bleich
    • 3
  1. 1.Department of Psychiatry and PsychotherapyUniversity Hospital of ErlangenErlangenGermany
  2. 2.Department of Epidemiology and Public HealthUniversity College CorkCorkIreland
  3. 3.Department of Psychiatry, Social Psychiatry and PsychotherapyMedical School of HanoverHannoverGermany

Personalised recommendations