Skip to main content
Log in

The neurogenic niche in the carotid body and its applicability to antiparkinsonian cell therapy

  • Movement Disorders - Review Article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

The carotid body (CB) is a neural crest-derived organ whose major function is to sense changes in arterial O2 tension to elicit hyperventilation during hypoxia. The CB is composed of clusters of neuron-like glomus, or type I, cells that are highly dopaminergic and contain large amounts of the glial cell line-derived neurotrophic factor (GDNF). Glomus cells are enveloped by glia-like sustentacular, or type II, cells. In chronic hypoxia the CB grows with increase in glomus cell number. This adaptive response depends on a collection of neural progenitors that can be isolated and induced to form clonal neurospheres in vitro. CB neurospheres contain numerous newly differentiated glomus cells, which maintain their functional properties and the ability to synthesize dopamine and GDNF. Intrastriatal CB transplants have been assayed in animal models of Parkinson’s disease (PD) to test whether they increase the striatal dopamine levels and/or exert a neuroprotective action on the nigrostriatal pathway. Two pilot safety studies performed on PD patients subjected to CB autotransplantation have suggested that a major limitation of this technique is the small size of the organ. This could, however, be overcome by the in vitro formation of new CB tissue derived from adult CB stem cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Arenas E, Trupp M, Akerud P et al (1995) GDNF prevents degeneration and promotes the phenotype of brain noradrenergic neurons in vivo. Neuron 15:1465–1473

    Article  PubMed  CAS  Google Scholar 

  • Arias-Stella J, Valcarcel J (1976) Chief cell hyperplasia in the human carotid body at high altitudes; physiologic and pathologic significance. Hum Pathol 7:361–373

    Article  PubMed  CAS  Google Scholar 

  • Arjona V, Mínguez-Castellanos A, Montoro RJ et al (2003) Autotransplantation of human carotid body cell aggregates for treatment of Parkinson’s disease. Neurosurgery 53:321–328

    Article  PubMed  Google Scholar 

  • Belzunegui S, Izal-Azcárate A, San Sebastián W et al (2008) Striatal carotid body graft promotes differentiation of neural progenitor cells into neurons in the olfactory bulb of adult hemiparkisonian rats. Brain Res 1217:213–220

    Article  PubMed  CAS  Google Scholar 

  • Braak H, Del Tredici K, Rüb U et al (2003) Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 24:197–211

    Article  PubMed  Google Scholar 

  • Choi-Lundberg DL, Lin Q, Chang YN et al (1997) Dopaminergic neurons protected from degeneration by GDNF gene therapy. Science 275:838–841

    Article  PubMed  CAS  Google Scholar 

  • Duchen MR, Caddy KWT, Kirby GC et al (1988) Biophysical studies of the cellular elements of the rabbit carotid body. Neuroscience 26:291–311

    Article  PubMed  CAS  Google Scholar 

  • Edwards C, Heath D, Harris P (1971) The carotid body in emphysema and left ventricular hypertrophy. J Pathol 104:1–13

    Article  PubMed  CAS  Google Scholar 

  • Erickson JT, Brosenitsch TA, Katz DM (2001) Brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor are required simultaneously for survival of dopaminergic primary sensory neurons in vivo. J Neurosci 21:581–589

    PubMed  CAS  Google Scholar 

  • Espejo EF, Montoro RJ, Armengol JA et al (1998) Cellular and functional recovery of Parkinsonian rats after intrastriatal transplantation of carotid body cell aggregates. Neuron 20:197–206

    Article  PubMed  CAS  Google Scholar 

  • Espejo M, Cutillas B, Arenas TE, Ambrosio S (2000) Increased survival of dopaminergic neurons in striatal grafts of fetal ventral mesencephalic cells exposed to neurotrophin-3 or glial cell line-derived neurotrophic factor. Cell Transpl 9:45–53

    CAS  Google Scholar 

  • Frim DM, Uhler TA, Galpern WR et al (1994) Implanted fibroblasts genetically engineered to produce brain-derived neurotrophic factor prevent 1-methyl-4-phenylpyridinium toxicity to dopaminergic neurons in the rat. Proc Natl Acad Sci USA 91:5104–5108

    Article  PubMed  CAS  Google Scholar 

  • García-Fernández M, Ortega-Sáenz P, Castellano A et al (2007) Mechanisms of low-glucose sensitivity in carotid body glomus cells. Diabetes 56:2893–2900

    Article  PubMed  Google Scholar 

  • Gash DM, Zhang Z, Ovadia A et al (1996) Functional recovery in parkinsonian monkeys treated with GDNF. Nature 380:252–255

    Article  PubMed  CAS  Google Scholar 

  • Hao G, Yao Y, Wang J et al (2002) Intrastriatal grafting of glomus cells ameliorates behavioral defects of Parkinsonian rats. Physiol Behav 77:519–525

    Article  PubMed  CAS  Google Scholar 

  • Heath D, Smith P, Jago R (1982) Hyperplasia of the carotid body. J Pathol 138:115–127

    Article  PubMed  CAS  Google Scholar 

  • Kirik D, Georgievska B, Björklund A (2004) Localized striatal delivery of GDNF as a treatment for Parkinson disease. Nature Neurosci 7:105–110

    Article  PubMed  CAS  Google Scholar 

  • Leitner ML, Wang LH, Osborne PA et al (2005) Expression and function of GDNF family ligands and receptors in the carotid body. Exp Neurol Suppl 1:S68–S79

    Article  Google Scholar 

  • Levivier M, Przedborski S, Bencsics C, Kang UJ (1995) Intrastriatal implantation of fibroblasts genetically engineered to produce brain-derived neurotrophic factor prevents degeneration of dopaminergic neurons in a rat model of Parkinson’s disease. J Neurosci 15:7810–7820

    PubMed  CAS  Google Scholar 

  • Lin LF, Doherty DH, Lile JD et al (1993) GDNF: a glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons. Science 260:1130–1132

    Article  PubMed  CAS  Google Scholar 

  • Li JY, Englund E, Holton JL, Soulet D et al (2008) Lewy bodies in grafted neurons in subjects with Parkinson’s disease suggest host-to-graft disease propagation. Nat Med 14:501–503

    Article  PubMed  CAS  Google Scholar 

  • López-Barneo J (2003) Oxygen and glucose sensing by carotid body glomus cells. Curr Opin Neurobiol 13:493–499

    Article  PubMed  Google Scholar 

  • López-Barneo J, López-López JR, Ureña J et al (1988) Chemotransduction in the carotid body: K+ current modulated by pO2 in type I chemoreceptor cells. Science 241:580–582

    Article  PubMed  Google Scholar 

  • López-Barneo J, Ortega-Sáenz P, Pardal R et al (2008a) Carotid body oxygen sensing. Eur Respir J 32:1386–1398

    Article  PubMed  Google Scholar 

  • López-Barneo J, Mínguez-Castellanos A, Toledo-Aral J (2008b) Cell therapy for Parkinson’s disease and other neurodegenerative disorders. In: García Olmo D, García-Verdugo JM, Alemany J, González MA, Gutiérrez-Fuentes JA et al (eds) Cell therapy. Mc-Graw Hill Interamericana, Basauri

    Google Scholar 

  • Luquin MR, Montoro RJ, Guillén J et al (1999) Recovery of chronic parkinsonian monkeys by autotransplants of carotid body cell aggregates into putamen. Neuron 22:743–750

    Article  PubMed  CAS  Google Scholar 

  • McGregor KH, Gil J, Lahiri S (1984) A morphometric study of the carotid body in chronically hypoxic rats. J Appl Physiol 57:1430–1438

    PubMed  CAS  Google Scholar 

  • Mínguez-Castellanos A, Escamilla-Sevilla F, Hotton GR et al (2007) Carotid body autotransplantation in Parkinson disease: a clinical and positron emission tomography study. J Neurol Neurosurg Psychiatry 78:825–831

    Article  PubMed  Google Scholar 

  • Montoro RJ, Ureña J, Fernández-Chacón R et al (1996) Oxygen sensing by ion channels and chemotransduction in single glomus cells. J Gen Physiol 107:133–143

    Article  PubMed  CAS  Google Scholar 

  • Nosrat CA, Tomac A, Lindqvist E et al (1996) Cellular expression of GDNF mRNA suggests multiple functions inside and outside the nervous system. Cell Tissue Res 286:191–207

    Article  PubMed  CAS  Google Scholar 

  • Nurse CA (2005) Neurotransmission and neuromodulation in the chemosensory carotid body. Auton Neurosci 120:1–9

    Article  PubMed  CAS  Google Scholar 

  • Nurse CA, Vollmer C (1997) Role of basic FGF and oxygen in control of proliferation, survival, and neuronal differentiation in carotid body chromaffin cells. Dev Biol 184:197–206

    Article  PubMed  CAS  Google Scholar 

  • Ortega-Sáenz P, Pascual A, Gómez-Díaz R et al (2006) Acute oxygen sensing in heme oxygenase-2 null mice. J Gen Physiol 128:405–411

    Article  PubMed  Google Scholar 

  • Pardal R, López-Barneo J (2002) Low glucose-sensing cells in the carotid body. Nature Neurosci 5:197–198

    Article  PubMed  CAS  Google Scholar 

  • Pardal R, Ludewig U, García-Hirschfeld J et al (2000) Secretory responses of intact glomus cells in thin slices of rat carotid body to hypoxia and tetraethylammonium. Proc Natl Acad Sci USA 97:2361–2366

    Article  PubMed  CAS  Google Scholar 

  • Pardal R, Ortega-Sáenz P, Durán R et al (2007) Glia-like stem cells sustain physiologic neurogenesis in the adult mammalian carotid body. Cell 131:364–377

    Article  PubMed  CAS  Google Scholar 

  • Pascual A, Hidalgo-Figueroa M, Piruat JI et al (2008) Absolute requirement of GDNF for adult catecholaminergic neuron survival. Nature Neurosci 11:755–761

    Article  PubMed  CAS  Google Scholar 

  • Peers C, Buckler KJ (1995) Transduction of chemostimuli by the type I carotid body cell. J Membr Biol 144:1–9

    PubMed  CAS  Google Scholar 

  • Sánchez MP, Silos-Santiago I, Frisén J et al (1996) Renal agenesis and the absence of enteric neurons in mice lacking GDNF. Nature 382:70–73

    Article  PubMed  Google Scholar 

  • Shukla S, Agrawal AK, Chaturvedi RK et al (2004) Co-transplantation of carotid body and ventral mesencephalic cells as an alternative approach towards functional restoration in 6-hydroxydopamine-lesioned rats: implications for Parkinson’s disease. J Neurochem 91:274–284

    Article  PubMed  CAS  Google Scholar 

  • Toledo-Aral JJ, Méndez-Ferrer S, Pardal R et al (2003) Trophic restoration of the nigrostriatal dopaminergic pathway in long-term carotid body-grafted parkinsonian rats. J Neurosci 23:141–148

    PubMed  CAS  Google Scholar 

  • Ureña J, López-López J, González C et al (1989) Ionic currents in dispersed chemoreceptor cells of the mammalian carotid body. J Gen Physiol 93:979–999

    Article  PubMed  Google Scholar 

  • Ureña J, Fernández-Chacón R, Benot AR et al (1994) Hypoxia induces voltage-dependent Ca2+ entry and quantal dopamine secretion in carotid body glomus cells. Proc Natl Acad Sci USA 91:10208–10211

    Article  PubMed  Google Scholar 

  • Villadiego J, Méndez-Ferrer S, Valdés-Sánchez T et al (2005) Selective glial cell line-derived neurotrophic factor production in adult dopaminergic carotid body cells in situ and after intrastriatal transplantation. J Neurosci 25:4091–4098

    Article  PubMed  CAS  Google Scholar 

  • Wang ZY, Bisgard GE (2002) Chronic hypoxia-induced morphological and neurochemical changes in the carotid body. Microsc Res Tech 59:168–177

    Article  PubMed  CAS  Google Scholar 

  • Weir EK, López-Barneo J, Buckler KJ et al (2005) Acute oxygen-sensing mechanisms. N Engl J Med 353:2042–2055

    Article  PubMed  CAS  Google Scholar 

  • Yu G, Xu L, Hadman M et al (2004) Intracerebral transplantation of carotid body in rats with transient middle cerebral artery occlusion. Brain Res 1015:50–56

    Article  PubMed  CAS  Google Scholar 

  • Zarow C, Lyness SA, Mortimer JA et al (2003) Neuronal loss is greater in the locus coeruleus than nucleus basalis and substantia nigra in Alzheimer and Parkinson diseases. Arch Neurol 60:337–341

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This research has been supported by the Instituto de Salud Carlos III (Ciberned and Red de Terapia Celular), The Spanish Ministry of Science, and the Juan March and Marcelino Botín Foundations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José López-Barneo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

López-Barneo, J., Pardal, R., Ortega-Sáenz, P. et al. The neurogenic niche in the carotid body and its applicability to antiparkinsonian cell therapy. J Neural Transm 116, 975–982 (2009). https://doi.org/10.1007/s00702-009-0201-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-009-0201-5

Keywords

Navigation