Skip to main content

Does exposure to extremely low frequency magnetic fields produce functional changes in human brain?

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Behavioral and neurophysiological changes have been reported after exposure to extremely low frequency magnetic fields (ELF-MF) both in animals and in humans. The physiological bases of these effects are still poorly understood. In vitro studies analyzed the effect of ELF-MF applied in pulsed mode (PEMFs) on neuronal cultures showing an increase in excitatory neurotransmission. Using transcranial brain stimulation, we studied noninvasively the effect of PEMFs on several measures of cortical excitability in 22 healthy volunteers, in 14 of the subjects we also evaluated the effects of sham field exposure. After 45 min of PEMF exposure, intracortical facilitation produced by paired pulse brain stimulation was significantly enhanced with an increase of about 20%, while other parameters of cortical excitability remained unchanged. Sham field exposure produced no effects. The increase in paired-pulse facilitation, a physiological parameter related to cortical glutamatergic activity, suggests that PEMFs exposure may produce an enhancement in cortical excitatory neurotransmission. This study suggests that PEMFs may produce functional changes in human brain.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  • Bassett CA, Mitchell SN, Gaston SR (1982) Pulsing electromagnetic field treatment in ununited fractures and failed arthrodeses. JAMA 247:623–628

    PubMed  Article  CAS  Google Scholar 

  • Bawin SM, Satmary WM, Jones RA, Adey WR, Zimmerman G (1996) Extremely-low-frequency magnetic fields disrupt rhythmic slow activity in rat hippocampal slices. Bioelectromagnetics 17:388–395

    PubMed  Article  CAS  Google Scholar 

  • Bell GB, Marino AA, Chesson AL (1992) Alterations in brain electrical activity caused by magnetic fields: detecting the detection process. Electroencephalogr Clin Neurophysiol 83:389–397

    PubMed  Article  CAS  Google Scholar 

  • Bell GB, Marino AA, Chesson AL (1994) Frequency-specific blocking in the human brain caused by electromagnetic fields. NeuroReport 5:510–512

    PubMed  Article  CAS  Google Scholar 

  • Blackman CF, Benane SG, House DE (1993) Evidence for direct effect of magnetic fields on neurite outgrowth. FASEB J 7:801–806

    PubMed  CAS  Google Scholar 

  • Campbell-Beachler M, Ishida-Jones T, Haggren W, Phillips JL (1998) Effect of 60 Hz magnetic field exposure on c-fos expression in stimulated PC12 cells. Mol Cell Biochem 189:107–111

    PubMed  Article  CAS  Google Scholar 

  • Chen JF, Sonsalla PK, Pedata F, Melani A, Domenici MR, Popoli P et al (2007) Adenosine A2A receptors and brain injury: broad spectrum of neuroprotection, multifaceted actions and “fine tuning” modulation. Prog Neurobiol 83:310–331

    PubMed  Article  CAS  Google Scholar 

  • Chen R, Cros D, Curra A, Di Lazzaro V, Lefaucheur JP, Magistris MR et al (2008) The clinical diagnostic utility of transcranial magnetic stimulation: report of an IFCN committee. Clin Neurophysiol 119:504–532

    PubMed  Article  Google Scholar 

  • Chiabrera A, Bianco B, Moggia E, Kaufman JJ (2000) Zeeman-Stark modeling of the RF EMF interaction with ligand binding. Bioelectromagnetics 21:312–324

    PubMed  Article  CAS  Google Scholar 

  • Choleris E, Del Seppia C, Thomas AW, Luschi P, Ghione G, Moran GR et al (2002) Shielding, but not zeroing of the ambient magnetic field reduces stress-induced analgesia in mice. Proc Biol Sci 269:193–201

    PubMed  Article  CAS  Google Scholar 

  • Cook CM, Thomas AW, Prato FS (2004) Resting EEG is affected by exposure to a pulsed ELF magnetic field. Bioelectromagnetics 25:196–203

    PubMed  Article  Google Scholar 

  • Cunha RA (2005) Neuroprotection by adenosine in the brain: from A(1) receptor activation to A (2A) receptor blockade. Purinergic Signal 1:111–134

    PubMed  Article  CAS  Google Scholar 

  • Di Lazzaro V, Pilato F, Oliviero A, Dileone M, Saturno E, Mazzone P et al (2006) Origin of facilitation of motor-evoked potentials after paired magnetic stimulation: direct recording of epidural activity in conscious humans. J Neurophysiol 96:1765–1771

    PubMed  Article  CAS  Google Scholar 

  • Dimitriou R, Babis GC (2007) Biomaterial osseointegration enhancement with biophysical stimulation. J Musculoskelet Neuronal Interact 7:253–265

    PubMed  CAS  Google Scholar 

  • Ferreri F, Curcio G, Pasqualetti P, De Gennaro L, Fini R, Rossini PM (2006) Mobile phone emissions and human brain excitability. Ann Neurol 60:188–196

    PubMed  Article  Google Scholar 

  • Fini M, Giavaresi G, Torricelli P, Cavani F, Setti S, Cane V et al (2005) Pulsed electromagnetic fields reduce knee osteoarthritic lesion progression in the aged Dunkin Hartley guinea pig. J Orthop Res 23:899–908

    PubMed  Article  CAS  Google Scholar 

  • Fredholm BB, Chen JF, Masino SA, Vaugeois JM (2005) Actions of adenosine at its receptors in the CNS: insights from knockouts and drugs. Annu Rev Pharmacol Toxicol 45:385–412

    PubMed  Article  CAS  Google Scholar 

  • Fregni F, Pascual-Leone A (2007) Technology insight: noninvasive brain stimulation in neurology-perspectives on the therapeutic potential of rTMS and tDCS. Nat Clin Pract Neurol 3:383–393

    PubMed  Article  Google Scholar 

  • Fregni F, Boggio PS, Valle AC, Rocha RR, Duarte J, Ferreira MJ et al (2006) A sham-controlled trial of a 5-day course of repetitive transcranial magnetic stimulation of the unaffected hemisphere in stroke patients. Stroke 37:2115–2122

    PubMed  Article  Google Scholar 

  • Ghione S, Seppia CD, Mezzasalma L, Bonfiglio L (2005) Effects of 50 Hz electromagnetic fields on electroencephalographic alpha activity, dental pain threshold and cardiovascular parameters in humans. Neurosci Lett 382:112–117

    PubMed  Article  CAS  Google Scholar 

  • Grant G, Cadossi R, Steinberg G (1994) Protection against focal cerebral ischemia following exposure to a pulsed electromagnetic field. Bioelectromagnetics 15:205–216

    PubMed  Article  CAS  Google Scholar 

  • Hardell L, Sage C (2008) Biological effects from electromagnetic field exposure and public exposure standards. Biomed Pharmacother 62:104–109

    PubMed  Article  CAS  Google Scholar 

  • Hogan MV, Wieraszko A (2004) An increase in cAMP concentration in mouse hippocampal slices exposed to low-frequency and pulsed magnetic fields. Neurosci Lett 366:43–47

    PubMed  Article  CAS  Google Scholar 

  • Jadidi M, Firoozabadi SM, Rashidy-Pour A, Sajadi AA, Sadeghi H, Taherian AA (2007) Acute exposure to a 50 Hz magnetic field impairs consolidation of spatial memory in rats. Neurobiol Learn Mem 88:387–392

    PubMed  Article  Google Scholar 

  • Janac B, Pesic V, Jelenkovic A, Vorobyov V, Prolic Z (2005) Different effects of chronic exposure to ELF magnetic field on spontaneous and amphetamine-induced locomotor and stereotypic activities in rats. Brain Res Bull 67:498–503

    PubMed  Article  CAS  Google Scholar 

  • Kavaliers M, Ossenkopp KP, Lipa SM (1990) Day–night rhythms in the inhibitory effects of 60 Hz magnetic fields on opiate-mediated ‘analgesic’ behaviors of the land snail, Cepaea nemoralis. Brain Res 517:276–282

    PubMed  Article  CAS  Google Scholar 

  • Kavaliers M, Choleris E, Prato FS, Ossenkopp K (1998) Evidence for the involvement of nitric oxide and nitric oxide synthase in the modulation of opioid-induced antinociception and the inhibitory effects of exposure to 60-Hz magnetic fields in the land snail. Brain Res 809:50–57

    PubMed  Article  CAS  Google Scholar 

  • Kujirai T, Caramia MD, Rothwell JC, Day BL, Thompson PD, Ferbert A et al (1993) Corticocortical inhibition in human motor cortex. J Physiol 471:501–519

    PubMed  CAS  Google Scholar 

  • Lai H, Carino MA, Ushijima I (1998) Acute exposure to a 60 Hz magnetic field affects rats’ water-maze performance. Bioelectromagnetics 19:117–122

    PubMed  Article  CAS  Google Scholar 

  • Liu T, Wang S, He L, Ye K (2008) Chronic exposure to low-intensity magnetic field improves acquisition and maintenance of memory. NeuroReport 19:549–552

    PubMed  Article  Google Scholar 

  • Lyskov EB, Juutilainen J, Jousmaki V, Partanen J, Medvedev S, Hanninen O (1993) Effects of 45-Hz magnetic fields on the functional state of the human brain. Bioelectromagnetics 14:87–95

    PubMed  Article  CAS  Google Scholar 

  • Manikonda PK, Rajendra P, Devendranath D, Gunasekaran B, Channakeshava AradhyaRS et al (2007) Influence of extremely low frequency magnetic fields on Ca2+ signaling and NMDA receptor functions in rat hippocampus. Neurosci Lett 413:145–149

    PubMed  Article  CAS  Google Scholar 

  • Massari L, Benazzo F, De Mattei M, Setti S, Fini M (2007) Effects of electrical physical stimuli on articular cartilage. J Bone Joint Surg Am 89(Suppl 3):152–161

    PubMed  Article  Google Scholar 

  • Massot O, Grimaldi B, Bailly JM, Kochanek M, Deschamps F, Lambrozo J et al (2000) Magnetic field desensitizes 5-HT(1B) receptor in brain: pharmacological and functional studies. Brain Res 858:143–150

    PubMed  Article  CAS  Google Scholar 

  • McFarlane EH, Dawe GS, Marks M, Campbell IC (2000) Changes in neurite outgrowth but not in cell division induced by low EMF exposure: influence of field strength and culture conditions on responses in rat PC12 pheochromocytoma cells. Bioelectrochemistry 52:23–28

    PubMed  Article  CAS  Google Scholar 

  • Nelson FR, Brighton CT, Ryaby J, Simon BJ, Nielson JH, Lorich DG et al (2003) Use of physical forces in bone healing. J Am Acad Orthop Surg 11:344–354

    PubMed  Google Scholar 

  • Oda T, Koike T (2004) Magnetic field exposure saves rat cerebellar granule neurons from apoptosis in vitro. Neurosci Lett 365:83–86

    PubMed  Article  CAS  Google Scholar 

  • Paulus W, Classen J, Cohen LG, Large CH, Di Lazzaro V, Nitsche M, Pascual-Leone A, Rosenow F, Rothwell JC, Ziemann U (2008) State of the art: pharmacologic effects on cortical excitability measures tested by transcranial magnetic stimulation. Brain Stimulat 1:151–163

    Article  Google Scholar 

  • Peto R (1978) Clinical trial methodology. Biomedicine 28 Spec No: 24–36

  • Piacentini R, Ripoli C, Mezzogori D, Azzena GB, Grassi C (2008) Extremely low-frequency electromagnetic fields promote in vitro neurogenesis via upregulation of Ca(v)1-channel activity. J Cell Physiol 215:129–139

    PubMed  Article  CAS  Google Scholar 

  • Pirozzoli MC, Marino C, Lovisolo GA, Laconi C, Mosiello L, Negroni A (2003) Effects of 50 Hz electromagnetic field exposure on apoptosis and differentiation in a neuroblastoma cell line. Bioelectromagnetics 24:510–516

    PubMed  Article  CAS  Google Scholar 

  • Podd J, Abbott J, Kazantzis N, Rowland A (2002) Brief exposure to a 50 Hz, 100 microT magnetic field: effects on reaction time, accuracy, and recognition memory. Bioelectromagnetics 23:189–195

    PubMed  Article  Google Scholar 

  • Rebola N, Rodrigues RJ, Oliveira CR, Cunha RA (2005) Different roles of adenosine A1, A2A and A3 receptors in controlling kainate-induced toxicity in cortical cultured neurons. Neurochem Int 47:317–325

    PubMed  Article  CAS  Google Scholar 

  • Ridding MC, Rothwell JC (2007) Is there a future for therapeutic use of transcranial magnetic stimulation? Nat Rev Neurosci 8:559–567

    PubMed  Article  CAS  Google Scholar 

  • Shupak NM, Hensel JM, Cross-Mellor SK, Kavaliers M, Prato FS, Thomas AW (2004) Analgesic and behavioral effects of a 100 microT specific pulsed extremely low frequency magnetic field on control and morphine treated CF-1 mice. Neurosci Lett 354:30–33

    PubMed  Article  CAS  Google Scholar 

  • Sienkiewicz ZJ, Haylock RG, Saunders RD (1998) Deficits in spatial learning after exposure of mice to a 50 Hz magnetic field. Bioelectromagnetics 19:79–84

    PubMed  Article  CAS  Google Scholar 

  • Strafella AP, Paus T (2001) Cerebral blood-flow changes induced by paired-pulse transcranial magnetic stimulation of the primary motor cortex. J Neurophysiol 85:2624–2629

    PubMed  CAS  Google Scholar 

  • Tebano MT, Martire A, Rebola N, Pepponi R, Domenici MR, Gro MC et al (2005) Adenosine A2A receptors and metabotropic glutamate 5 receptors are co-localized and functionally interact in the hippocampus: a possible key mechanism in the modulation of N-methyl-d-aspartate effects. J Neurochem 95:1188–1200

    PubMed  Article  CAS  Google Scholar 

  • Thomas AW, Kavaliers M, Prato FS, Ossenkopp KP (1997) Antinociceptive effects of a pulsed magnetic field in the land snail, Cepaea nemoralis. Neurosci Lett 222:107–110

    PubMed  Article  CAS  Google Scholar 

  • Thomas AW, Drost DJ, Prato FS (2001) Human subjects exposed to a specific pulsed (200 microT) magnetic field: effects on normal standing balance. Neurosci Lett 297:121–124

    PubMed  Article  CAS  Google Scholar 

  • Tokimura H, Di Lazzaro V, Tokimura Y, Oliviero A, Profice P, Insola A et al (2000) Short latency inhibition of human hand motor cortex by somatosensory input from the hand. J Physiol 523(Pt 2):503–513

    PubMed  Article  CAS  Google Scholar 

  • Valentini E, Curcio G, Moroni F, Ferrara M, De Gennaro L, Bertini M (2007) Neurophysiological effects of mobile phone electromagnetic fields on humans: a comprehensive review. Bioelectromagnetics 28:415–432

    PubMed  Article  CAS  Google Scholar 

  • Varani K, Gessi S, Merighi S, Iannotta V, Cattabriga E, Spisani S et al (2002) Effect of low frequency electromagnetic fields on A2A adenosine receptors in human neutrophils. Br J Pharmacol 136:57–66

    PubMed  Article  CAS  Google Scholar 

  • Varani K, Gessi S, Merighi S, Iannotta V, Cattabriga E, Pancaldi C et al (2003) Alteration of A(3) adenosine receptors in human neutrophils and low frequency electromagnetic fields. Biochem Pharmacol 66:1897–1906

    PubMed  Article  CAS  Google Scholar 

  • Varani K, De Mattei M, Vincenzi F, Gessi S, Merighi S, Pellati A et al (2008) Characterization of adenosine receptors in bovine chondrocytes and fibroblast-like synoviocytes exposed to low frequency low energy pulsed electromagnetic fields. Osteoarthritis Cartilage 16:292–304

    PubMed  Article  CAS  Google Scholar 

  • Vazquez-Garcia M, Elias-Vinas D, Reyes-Guerrero G, Dominguez-Gonzalez A, Verdugo-Diaz L, Guevara-Guzman R (2004) Exposure to extremely low-frequency electromagnetic fields improves social recognition in male rats. Physiol Behav 82:685–690

    PubMed  Article  CAS  Google Scholar 

  • Wieraszko A (2004) Amplification of evoked potentials recorded from mouse hippocampal slices by very low repetition rate pulsed magnetic fields. Bioelectromagnetics 25:537–544

    PubMed  Article  Google Scholar 

  • Wieraszko A, Armani J, Maqsood N, Raja H, Philip S (2005) Modification of the synaptic glutamate turnover in the hippocampal tissue exposed to low-frequency, pulsed magnetic fields. Brain Res 1052:232–235

    PubMed  Article  CAS  Google Scholar 

  • Ziemann U, Rothwell JC, Ridding MC (1996) Interaction between intracortical inhibition and facilitation in human motor cortex. J Physiol 496(Pt 3):873–881

    PubMed  CAS  Google Scholar 

  • Ziemann U, Chen R, Cohen LG, Hallett M (1998) Dextromethorphan decreases the excitability of the human motor cortex. Neurology 51:1320–1324

    PubMed  CAS  Google Scholar 

Download references

Conflict of interest statement

Ruggero Cadossi is President and Director of IGEA S.p.A. that produces and distributes the PEMF exposure device. Stefania Setti is an employee of IGEA S.p.A. that produces and distributes the PEMF exposure device

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Di Lazzaro.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Capone, F., Dileone, M., Profice, P. et al. Does exposure to extremely low frequency magnetic fields produce functional changes in human brain?. J Neural Transm 116, 257–265 (2009). https://doi.org/10.1007/s00702-009-0184-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-009-0184-2

Keywords

  • Electromagnetic fields
  • Human brain
  • TMS
  • Cerebral cortex