A population-based association study of glutamate decarboxylase 1 as a candidate gene for autism

  • Henriette Nørmølle Buttenschøn
  • Marlene Briciet Lauritsen
  • Agata El Daoud
  • Mads Hollegaard
  • Meta Jorgensen
  • Kristine Tvedegaard
  • David Hougaard
  • Anders Børglum
  • Poul Thorsen
  • Ole Mors
Biological Child and Adolescent Psychiatry - Original Article

Abstract

Linkage studies, genome-wide scans and screening of possible candidate genes suggest that chromosome 2q31 may harbour one or more susceptibility genes for autism. The glutamate decarboxylase gene 1 (GAD1) located within chromosome 2q31 encodes the enzyme, GAD67, catalyzing the production of gamma-aminobutyric acid (GABA) from glutamate. Numerous independent findings have suggested the GABAergic system to be involved in autism. The present study investigates a Danish population-based, case-control sample of 444 subjects with childhood autism and 444 controls. Nine single nucleotide polymorphisms (SNPs) comprising the GAD1 gene and the microsatellite marker D2S2381 were examined for association with autism. We found no association between childhood autism and any single marker or 2–5 marker haplotypes. However, a rare nine-marker haplotype was associated with childhood autism. We cannot exclude neither GAD1 as a susceptibility gene nor the possibility of another susceptibility gene for autism to be located on chromosome 2q31.

Keywords

Autism GAD1 GABA Association 2q31 

References

  1. Lauritsen MB et al (2008) Quality of the diagnosis of childhood autism in the Danish Psychiatric Central Register (in preparation)Google Scholar
  2. AC IMS (2001) A genomewide screen for autism: strong evidence for linkage to chromosomes 2q, 7q, and 16p. Am J Hum Genet 69(3):570–581CrossRefGoogle Scholar
  3. Addington AM et al (2005) GAD1 (2q31.1), which encodes glutamic acid decarboxylase (GAD67), is associated with childhood-onset schizophrenia and cortical gray matter volume loss. Mol Psychiatry 10(6):581–588PubMedCrossRefGoogle Scholar
  4. Ambrosius WT, Lange EM, Langefeld CD (2004) Power for genetic association studies with random allele frequencies and genotype distributions. Am J Hum Genet 74(4):683–693PubMedCrossRefGoogle Scholar
  5. American Psychiatric Association (1994) Diagnostic and statistical manual of mental disorders, 4th edn. American Psychiatric Association, WashingtonGoogle Scholar
  6. Bailey A et al (1995) Autism as a strongly genetic disorder: evidence from a British twin study. Psychol Med 25(1):63–77PubMedCrossRefGoogle Scholar
  7. Bergen AW et al (2005) Effects of DNA mass on multiple displacement whole genome amplification and genotyping performance. BMC Biotechnol 5:24PubMedCrossRefGoogle Scholar
  8. Blasi F et al (2005) SLC25A12 and CMYA3 gene variants are not associated with autism in the IMGSAC multiplex family sample. Eur J Hum Genet 14(1):123–126Google Scholar
  9. Blatt GJ (2005) GABAergic cerebellar system in autism: a neuropathological and developmental perspective. Int Rev Neurobiol 71:167–178PubMedCrossRefGoogle Scholar
  10. Blatt GJ et al (2001) Density and distribution of hippocampal neurotransmitter receptors in autism: an autoradiographic study. J Autism Dev Disord 31(6):537–543PubMedCrossRefGoogle Scholar
  11. Bolton P et al (1994) A case-control family history study of autism. J Child Psychol Psychiatry 35(5):877–900PubMedCrossRefGoogle Scholar
  12. Buxbaum JD et al (2001) Evidence for a susceptibility gene for autism on chromosome 2 and for genetic heterogeneity. Am J Hum Genet 68(6):1514–1520PubMedCrossRefGoogle Scholar
  13. Collins AL et al (2006) Investigation of autism and GABA receptor subunit genes in multiple ethnic groups. Neurogenetics 7(3):167–174PubMedCrossRefGoogle Scholar
  14. Dean FB et al (2002) Comprehensive human genome amplification using multiple displacement amplification. Proc Natl Acad Sci USA 99(8):5261–5266PubMedCrossRefGoogle Scholar
  15. Dhossche D et al (2002) Elevated plasma gamma-aminobutyric acid (GABA) levels in autistic youngsters: stimulus for a GABA hypothesis of autism. Med Sci Monit 8(8):R1–R6Google Scholar
  16. Fatemi SH et al (2002) Glutamic acid decarboxylase 65 and 67 kDa proteins are reduced in autistic parietal and cerebellar cortices. Biol Psychiatry 52(8):805–810PubMedCrossRefGoogle Scholar
  17. Freitag CM (2007) The genetics of autistic disorders and its clinical relevance: a review of the literature. Mol Psychiatry 12(1):2–22PubMedCrossRefGoogle Scholar
  18. Hannelius U et al (2005) Phenylketonuria screening registry as a resource for population genetic studies. J Med Genet 42(10):e60PubMedCrossRefGoogle Scholar
  19. Hollegaard MV et al (2007) Whole genome amplification and genetic analysis after extraction of proteins from dried blood spots. Clin Chem 53(6):1161–1162PubMedCrossRefGoogle Scholar
  20. Lauritsen MB et al (2006) A genome-wide search for alleles and haplotypes associated with autism and related pervasive developmental disorders on the Faroe Islands. Mol Psychiatry 11(1):37–46PubMedCrossRefGoogle Scholar
  21. Lundorf MD et al (2005) Mutational screening and association study of glutamate decarboxylase 1 as a candidate susceptibility gene for bipolar affective disorder and schizophrenia. Am J Med Genet B Neuropsychiatr Genet 135B(1):94–101PubMedCrossRefGoogle Scholar
  22. Munk-Jorgensen P, Mortensen PB (1997) The Danish Psychiatric Central Register. Dan Med Bull 44(1):82–84PubMedGoogle Scholar
  23. Norgaard-Pedersen B, Simonsen H (1999) Biological specimen banks in neonatal screening. Acta Paediatr Suppl 88(432):106–109PubMedGoogle Scholar
  24. Philippe A et al (1999) Genome-wide scan for autism susceptibility genes. Paris Autism Research International Sibpair Study. Hum Mol Genet 8(5):805–812PubMedCrossRefGoogle Scholar
  25. Rabionet R et al (2004) Analysis of the autism chromosome 2 linkage region: GAD1 and other candidate genes. Neurosci Lett 372(3):209–214PubMedCrossRefGoogle Scholar
  26. Rabionet R et al (2006) Lack of association between autism and SLC25A12. Am J Psychiatry 163(5):929–931PubMedCrossRefGoogle Scholar
  27. Ramoz N et al (2004) Linkage and association of the mitochondrial aspartate/glutamate carrier SLC25A12 gene with autism. Am J Psychiatry 161(4):662–669PubMedCrossRefGoogle Scholar
  28. Risch N et al (1999) A genomic screen of autism: evidence for a multilocus etiology. Am J Hum Genet 65(2):493–507PubMedCrossRefGoogle Scholar
  29. Romano V et al (2005) Suggestive evidence for association of D2S2188 marker (2q31.1) with autism in 143 Sicilian (Italian) TRIO families. Psychiatr Genet 15(2):149–150PubMedCrossRefGoogle Scholar
  30. Schaid DJ et al (2002) Score tests for association between traits and haplotypes when linkage phase is ambiguous. Am J Hum Genet 70(2):425–434PubMedCrossRefGoogle Scholar
  31. Segurado R et al (2005) Confirmation of association between autism and the mitochondrial aspartate/glutamate carrier SLC25A12 gene on chromosome 2q31. Am J Psychiatry 162(11):2182–2184PubMedCrossRefGoogle Scholar
  32. Shao Y et al (2002a) Phenotypic homogeneity provides increased support for linkage on chromosome 2 in autistic disorder. Am J Hum Genet 70(4):1058–1061PubMedCrossRefGoogle Scholar
  33. Shao Y et al (2002b) Genomic screen and follow-up analysis for autistic disorder. Am J Med Genet 114(1):99–105PubMedCrossRefGoogle Scholar
  34. Simonsen H, Brandt NJ, Norgaard-Pedersen B (1998) Neonatal screening in Denmark. Status and future perspectives. Ugeskr Laeger 160(40):5777–5782PubMedGoogle Scholar
  35. Sorensen KM et al (2007) Whole genome amplification on DNA from filter paper blood spot samples: an evaluation of selected systems. Genet Test 11(1):65–71PubMedCrossRefGoogle Scholar
  36. R Development Core Team (2004) R: a language and environment for statistical computing, Vienna, Austria R Foundation for statistical computingGoogle Scholar
  37. Yip J, Soghomonian JJ, Blatt GJ (2007) Decreased GAD67 mRNA levels in cerebellar Purkinje cells in autism: pathophysiological implications. Acta Neuropathol 113(5):559–568PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Henriette Nørmølle Buttenschøn
    • 1
  • Marlene Briciet Lauritsen
    • 1
    • 2
  • Agata El Daoud
    • 1
  • Mads Hollegaard
    • 2
    • 3
    • 4
  • Meta Jorgensen
    • 5
  • Kristine Tvedegaard
    • 2
  • David Hougaard
    • 3
  • Anders Børglum
    • 1
    • 6
  • Poul Thorsen
    • 2
  • Ole Mors
    • 1
  1. 1.Centre for Psychiatric ResearchAarhus University HospitalRisskovDenmark
  2. 2.Department of Epidemiology and Social Medicine, NANEAUniversity of AarhusAarhusDenmark
  3. 3.Department of Clinical BiochemistryStatens Serum InstitutCopenhagenDenmark
  4. 4.Department of Biochemistry and Molecular BiologyUniversity of Southern DenmarkOdenseDenmark
  5. 5.Psychiatric Hospital for Children and AdolescentsAarhus University HospitalRisskovDenmark
  6. 6.Institute of Human GeneticsUniversity of AarhusAarhusDenmark

Personalised recommendations