Skip to main content
Log in

Decreased M1 muscarinic receptor density in rat amphetamine model of schizophrenia is normalized by clozapine, but not haloperidol

  • Biological Psychiatry - Original Article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

There is increasing evidence supporting the involvement of the muscarinic–cholinergic system in schizophrenia. We examined the M1 muscarinic receptor density and mRNA expression in brains of a rat amphetamine model of schizophrenia. We also assessed the effect of the model and chronic treatment with haloperidol and clozapine on brain M1 receptor density and gene expression. A significant decrease of about 20% in the density of M1 receptor was detected in the cortex and in the striatum of amphetamine model rats. A significant increase of 33% in the density of the M1 receptor was found in the cortex and striatum of rats treated chronically with clozapine (0.5 mg/kg), but not with haloperidol (25 mg/kg). Chronic clozapine, but not haloperidol, normalized the decrease in M1 receptors observed in amphetamine model rats, in both cortex and striatum. Regulation of the M1 receptor may occur in a post-transcriptional phase. Our findings suggest involvement of both dopaminergic and cholinergic–muscarinic systems in the pathophysiology and pharmacotherapy of schizophrenia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Baldessarini R, Tarazi F (2006) Drug therapy of psychosis and mania. In: Brunton L (ed) Goodman and Gilman’s the pharmacological basis of therapeutics, 11th edn. McGraw-Hill, New York

    Google Scholar 

  • Barak S, Weiner I (2007) Scopolamine induces disruption of latent inhibition which is prevented by antipsychotic drugs and an acetylcholinesterase inhibitor. Neuropsychopharmacology 32:989–999

    Article  PubMed  CAS  Google Scholar 

  • Borda T, Perez Rivera R, Joensen L et al (2002) Antibodies against cerebral M1 cholinergic muscarinic receptor from schizophrenic patients: molecular interaction. J Immunol 168:3667–3674

    PubMed  CAS  Google Scholar 

  • Boyson SJ, McGonigle P, Luthin GR et al (1988) Effects of chronic administration of neuroleptic and anticholinergic agents on densities of D2 dopamine and muscarinic cholinergic receptors in rat striatum. J Pharmacol Exp Ther 244:987–993

    PubMed  CAS  Google Scholar 

  • Bray NJ, Owen MJ (2001) Searching for schizophrenia genes. Trends Mol Med 7:169–174

    Article  PubMed  CAS  Google Scholar 

  • Brown J, Talor P (2006) Mucarinic receptor agonists and antagonists. In: Brunton L (ed) Goodman and Gilman’s the pharmacological basis of theraputics, 11th edn. McGraw-Hill, New York

    Google Scholar 

  • Burris KD, Molski TF, Xu C et al (2002) Aripiprazole, a novel antipsychotic, is a high-affinity partial agonist at human dopamine D2 receptors. J Pharmacol Exp Ther 302:381–389

    Article  PubMed  CAS  Google Scholar 

  • Bymaster FP, Shannon HE, Rasmussen K et al (1999) Potential role of muscarinic receptors in schizophrenia. Life Sci 64:527–534

    Article  PubMed  CAS  Google Scholar 

  • Bymaster FP, Felder C, Ahmed S et al (2002) Muscarinic receptors as a target for drugs treating schizophrenia. Curr Drug Targets CNS Neurol Disord 1:163–181

    Article  PubMed  CAS  Google Scholar 

  • Chan WY, McKinzie DL, Bose S et al (2008) Allosteric modulation of the muscarinic M4 receptor as an approach to treating schizophrenia. Proc Natl Acad Sci USA 105:10978–10983

    Article  PubMed  CAS  Google Scholar 

  • Crook JM, Dean B, Pavey G et al (1999) The binding of [3H]AF-DX 384 is reduced in the caudate-putamen of subjects with schizophrenia. Life Sci 64:1761–1771

    Article  PubMed  CAS  Google Scholar 

  • Crook JM, Tomaskovic-Crook E, Copolov DL et al (2001) Low muscarinic receptor binding in prefrontal cortex from subjects with schizophrenia: a study of Brodmann’s areas 8, 9, 10, and 46 and the effects of neuroleptic drug treatment. Am J Psychiatry 158:918–925

    PubMed  CAS  Google Scholar 

  • Dean B, Crook JM, Pavey G et al (2000) Muscarinic1 and 2 receptor mRNA in the human caudate-putamen: no change in m1 mRNA in schizophrenia. Mol Psychiatry 5:203–207

    Article  PubMed  CAS  Google Scholar 

  • Dean B, McLeod M, Keriakous D et al (2002) Decreased muscarinic1 receptors in the dorsolateral prefrontal cortex of subjects with schizophrenia. Mol Psychiatry 7:1083–1091

    Article  PubMed  CAS  Google Scholar 

  • Edelstein P, Schultz JR, Hirschowitz J et al (1981) Physostigmine and lithium response in the schizophrenias. Am J Psychiatry 138:1078–1081

    PubMed  CAS  Google Scholar 

  • Feltenstein MW, Altar CA, See RE (2007) Aripiprazole blocks reinstatement of cocaine seeking in an animal model of relapse. Biol Psychiatry 61:582–590

    Article  PubMed  CAS  Google Scholar 

  • Flynn DD, Ferrari-DiLeo G, Mash DC et al (1995) Differential regulation of molecular subtypes of muscarinic receptors in Alzheimer’s disease. J Neurochem 64:1888–1891

    Article  PubMed  CAS  Google Scholar 

  • Gambill JD, Kornetsky C (1976) Effects of chronic d-amphetamine on social behavior of the rat: implications for an animal model of paranoid schizophrenia. Psychopharmacology (Berl) 50:215–223

    Article  CAS  Google Scholar 

  • Gerber DJ, Sotnikova TD, Gainetdinov RR et al (2001) Hyperactivity, elevated dopaminergic transmission, and response to amphetamine in M1 muscarinic acetylcholine receptor-deficient mice. Proc Natl Acad Sci USA 98:15312–15317

    Article  PubMed  CAS  Google Scholar 

  • Jones CK, Eberle EL, Shaw DB et al (2005) Pharmacologic interactions between the muscarinic cholinergic and dopaminergic systems in the modulation of prepulse inhibition in rats. J Pharmacol Exp Ther 312:1055–1063

    Article  PubMed  CAS  Google Scholar 

  • Levey AI, Kitt CA, Simonds WF et al (1991) Identification and localization of muscarinic acetylcholine receptor proteins in brain with subtype-specific antibodies. J Neurosci 11:3218–3226

    PubMed  CAS  Google Scholar 

  • Li Z, Huang M, Ichikawa J et al (2005) N-desmethylclozapine, a major metabolite of clozapine, increases cortical acetylcholine and dopamine release in vivo via stimulation of M1 muscarinic receptors. Neuropsychopharmacology 30:1986–1995

    Article  PubMed  CAS  Google Scholar 

  • Matsumoto I, Inoue Y, Iwazaki T et al (2005) 5-HT2A and muscarinic receptors in schizophrenia: a postmortem study. Neurosci Lett 379:164–168

    Article  PubMed  CAS  Google Scholar 

  • Miyamoto S, Duncan GE, Marx CE et al (2005) Treatments for schizophrenia: a critical review of pharmacology and mechanisms of action of antipsychotic drugs. Mol Psychiatry 10:79–104

    Article  PubMed  CAS  Google Scholar 

  • Muller P, Seeman P (1977) Brain neurotransmitter receptors after long-term haloperidol: dopamine, acetylcholine, serotonin, alpha-noradrenergic and naloxone receptors. Life Sci 21:1751–1758

    Article  PubMed  CAS  Google Scholar 

  • Murphy CA, Fend M, Russig H et al (2001) Latent inhibition, but not prepulse inhibition, is reduced during withdrawal from an escalating dosage schedule of amphetamine. Behav Neurosci 115:1247–1256

    Article  PubMed  CAS  Google Scholar 

  • Raedler TJ, Knable MB, Jones DW et al (2000) In vivo olanzapine occupancy of muscarinic acetylcholine receptors in patients with schizophrenia. Neuropsychopharmacology 23:56–68

    Article  PubMed  CAS  Google Scholar 

  • Raedler TJ, Knable MB, Jones DW et al (2003a) Central muscarinic acetylcholine receptor availability in patients treated with clozapine. Neuropsychopharmacology 28:1531–1537

    Article  PubMed  CAS  Google Scholar 

  • Raedler TJ, Knable MB, Jones DW et al (2003b) In vivo determination of muscarinic acetylcholine receptor availability in schizophrenia. Am J Psychiatry 160:118–127

    Article  PubMed  Google Scholar 

  • Raedler TJ, Bymaster FP, Tandon R et al (2007) Towards a muscarinic hypothesis of schizophrenia. Mol Psychiatry 12:232–246

    PubMed  CAS  Google Scholar 

  • Rehavi M, Roz N, Weizman A (2002) Chronic clozapine, but not haloperidol, treatment affects rat brain vesicular monoamine transporter 2. Eur Neuropsychopharmacol 12:261–268

    Article  PubMed  CAS  Google Scholar 

  • Robinson TE, Becker JB (1986) Enduring changes in brain and behavior produced by chronic amphetamine administration: a review and evaluation of animal models of amphetamine psychosis. Brain Res 396:157–198

    Article  PubMed  CAS  Google Scholar 

  • Russig H, Kovacevic A, Murphy CA et al (2003) Haloperidol and clozapine antagonise amphetamine-induced disruption of latent inhibition of conditioned taste aversion. Psychopharmacology (Berl) 170:263–270

    Article  CAS  Google Scholar 

  • Sadock BJ, Sadock VA (2003) Kaplan & Sadock’s synopsis of psychiatry: behavioral sciences, clinical psychiatry, 9th edn. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  • See RE, Toga AW, Ellison G (1990) Autoradiographic analysis of regional alterations in brain receptors following chronic administration and withdrawal of typical and atypical neuroleptics in rats. J Neural Transm Gen Sect 82:93–109

    Article  PubMed  CAS  Google Scholar 

  • Shekhar A, Potter WZ, Lightfoot J et al (2008) Selective muscarinic receptor agonist xanomeline as a novel treatment approach for schizophrenia. Am J Psychiatry 165:1033–1039

    Article  PubMed  Google Scholar 

  • Silvestri S, Seeman MV, Negrete JC et al (2000) Increased dopamine D2 receptor binding after long-term treatment with antipsychotics in humans: a clinical PET study. Psychopharmacology (Berl) 152:174–180

    Article  CAS  Google Scholar 

  • Snyder S, Greenberg D, Yamamura HI (1974) Antischizophrenic drugs and brain cholinergic receptors. Affinity for muscarinic sites predicts extrapyramidal effects. Arch Gen Psychiatry 31:58–61

    PubMed  CAS  Google Scholar 

  • Tandon R, Greden JF (1989) Cholinergic hyperactivity and negative schizophrenic symptoms. A model of cholinergic/dopaminergic interactions in schizophrenia. Arch Gen Psychiatry 46:745–753

    PubMed  CAS  Google Scholar 

  • Tenn CC, Fletcher PJ, Kapur S (2003) Amphetamine-sensitized animals show a sensorimotor gating and neurochemical abnormality similar to that of schizophrenia. Schizophr Res 64:103–114

    Article  PubMed  Google Scholar 

  • Tenn CC, Fletcher PJ, Kapur S (2005) A putative animal model of the “prodromal” state of schizophrenia. Biol Psychiatry 57:586–593

    Article  PubMed  CAS  Google Scholar 

  • Terry AV Jr, Gearhart DA, Mahadik SP et al (2006) Chronic treatment with first or second generation antipsychotics in rodents: effects on high affinity nicotinic and muscarinic acetylcholine receptors in the brain. Neuroscience 140:1277–1287

    Article  PubMed  CAS  Google Scholar 

  • Toru M, Watanabe S, Shibuya H et al (1988) Neurotransmitters, receptors and neuropeptides in post-mortem brains of chronic schizophrenic patients. Acta Psychiatr Scand 78:121–137

    Article  PubMed  CAS  Google Scholar 

  • Tune L, Coyle JT (1980) Serum levels of anticholinergic drugs in treatment of acute extrapyramidal side effects. Arch Gen Psychiatry 37:293–297

    PubMed  CAS  Google Scholar 

  • Ushijima I, Kawano M, Kaneyuki H et al (1997) Dopaminergic and cholinergic interaction in cataleptic responses in mice. Pharmacol Biochem Behav 58:103–108

    Article  PubMed  CAS  Google Scholar 

  • Watanabe S, Nishikawa T, Takashima M et al (1983) Increased muscarinic cholinergic receptors in prefrontal cortices of medicated schizophrenics. Life Sci 33:2187–2196

    Article  PubMed  CAS  Google Scholar 

  • Watson M, Roeske WR, Yamamura HI (1982) [3H]pirenzepine selectively identifies a high affinity population of muscarinic cholinergic receptors in the rat cerebral cortex. Life Sci 31:2019–2023

    Article  PubMed  CAS  Google Scholar 

  • Watson M, Roeske WR, Yamamura HI (1986a) [3H]pirenzepine and (−)-[3H]quinuclidinyl benzilate binding to rat cerebral cortical and cardiac muscarinic cholinergic sites. II. Characterization and regulation of antagonist binding to putative muscarinic subtypes. J Pharmacol Exp Ther 237:419–427

    PubMed  CAS  Google Scholar 

  • Watson M, Yamamura HI, Roeske WR (1986b) [3H]pirenzepine and (−)-[3H]quinuclidinyl benzilate binding to rat cerebral cortical and cardiac muscarinic cholinergic sites. I. Characterization and regulation of agonist binding to putative muscarinic subtypes. J Pharmacol Exp Ther 237:411–418

    PubMed  CAS  Google Scholar 

  • Weiner I (2003) The “two-headed” latent inhibition model of schizophrenia: modeling positive and negative symptoms and their treatment. Psychopharmacology (Berl) 169:257–297

    Article  CAS  Google Scholar 

  • Xing X, Lai M, Wang Y et al (2006) Overexpression of glucose-regulated protein 78 in colon cancer. Clin Chim Acta 364:308–315

    Article  PubMed  CAS  Google Scholar 

  • Zavitsanou K, Katsifis A, Mattner F et al (2004) Investigation of m1/m4 muscarinic receptors in the anterior cingulate cortex in schizophrenia, bipolar disorder, and major depression disorder. Neuropsychopharmacology 29:619–625

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Shifra Ben Dor from the Department of Biological Services in the Weizmann Institute of Science, Rehovot, Israel, for her assistance in the bioinformatic aspects of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moshe Rehavi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malkoff, A., Weizman, A., Gozes, I. et al. Decreased M1 muscarinic receptor density in rat amphetamine model of schizophrenia is normalized by clozapine, but not haloperidol. J Neural Transm 115, 1563–1571 (2008). https://doi.org/10.1007/s00702-008-0122-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-008-0122-8

Keywords

Navigation