Skip to main content
Log in

The exercise redox paradigm in the Down’s syndrome: improvements in motor function and increases in blood oxidative status in young adults

  • Basic Neurosciences, Genetics and Immunology - Original Article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

Considerable evidence has indicated a pro-oxidant status in the brain of people with Down’s syndrome (DS), which may contribute to motor and cognitive impairments verified in this condition. On the other hand, previous studies addressing the role of physical exercise on oxidative stress and antioxidant status in DS have indicated conflicting results. Here, we investigated the effects of a supervised judo training of controlled intensity and monitored on the basis of lactate threshold on the blood oxidative stress status and motor coordination in 21 young adults with DS. The training extended over a period of 16 weeks and consisted of three sessions per week. The exercise improved the motor function and significantly decreased lactate production in the DS subjects. However, blood markers of oxidative damage to lipids (TBARS and lipid peroxides) and proteins (carbonyls) were increased by the judo training. Moreover, superoxide dismutase and catalase activity also increased, while glutathione peroxidase activity remained unaltered after exercise. These results reinforce the notion that physical exercise can improve motor disabilities in people with DS. More importantly, our findings demonstrate that the beneficial effects are accompanied by some degree of oxidative stress, suggesting that young adults with DS may be more susceptible to physical training-induced oxidative stress than adolescents with DS, which should be taken into account in physical training programs for this population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Acikgoz O, Aksu I, Topcu A, Kayatekin BM (2006) Acute exhaustive exercise does not alter lipid peroxidation levels and antioxidant enzyme activities in rat hippocampus, prefrontal cortex and striatum. Neurosci Lett 406:148–151

    Article  PubMed  CAS  Google Scholar 

  • Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  PubMed  CAS  Google Scholar 

  • Aguiar AS Jr, Pinho RA (2007) Efeitos do exercício físico sobre o estado redox cerebral. Rev Bras Med Esp 13:355–360. doi:10.1590/S1517-86922007000500014

    Google Scholar 

  • Aliakbar S, Brown PR, Bidwell D, Nicolaides KH (1993) Human erythrocyte superoxide dismutase in adults, neonates, and normal, hypoxaemic, anaemic, and chromosomally abnormal fetuses. Clin Biochem 2:109–115

    Article  Google Scholar 

  • Angulo-Barroso RM, Wu J, Ulrich DA (2008) Long-term effect of different treadmill interventions on gait development in new walkers with Down syndrome. Gait Posture 27:231–238

    Article  PubMed  Google Scholar 

  • Apor P, Radi A (2006) Physical exercise, oxidative stress and damage. Orv Hetil 147:1025–1031

    PubMed  Google Scholar 

  • Bannister JV, Calabrese L (1987) Assays for superoxide dismutase. Methods Biochem Anal 32:279–312

    Article  PubMed  CAS  Google Scholar 

  • Barnhart RC, Connolly B (2007) Aging and Down syndrome: implications for physical therapy. Phys Ther 87:1399–1406

    PubMed  Google Scholar 

  • Billat LV (1996) Use of blood lactate measurements for prediction of exercise performance and for control of training. Recommendations for long-distance running. Sports Med 22:157–175

    PubMed  CAS  Google Scholar 

  • Boyce WF, Gowland C, Rosenbaum PL, Lane M, Plews N, Goldsmith CH, Russell DJ, Wright V, Potter S, Harding D (1995) The gross motor performance measure, validity and responsiveness of a measure of quality of movement. Phys Ther 7:603–613

    Google Scholar 

  • Cavas L, Arpinar P, Yurdakoc K (2005) Possible interactions between antioxidant enzymes and free sialic acids in saliva: a preliminary study on elite judoists. Int J Sports Med 26:832–835

    Article  PubMed  CAS  Google Scholar 

  • Ciaccio M, Piccione M, Giuffra M, Macaione V, Vocca L, Bono A, Corsello G (2003) Aminoacid profile and oxidative status in children affected by Down syndrome before and after supplementary nutritional treatment. Ital J Biochem 52:72–79

    PubMed  CAS  Google Scholar 

  • Cotman CW, Berchtold NC (2002) Exercise: a behavioral intervention to enhance brain health and plasticity. Trends Neurosci 25:295–301

    Article  PubMed  CAS  Google Scholar 

  • Draper HH, Hadley M (1990) Malondialdehyde determination as index of lipid peroxidation. Methods Enzymol 186:421–431

    Article  PubMed  CAS  Google Scholar 

  • Dringen R, Hirrlinger J (2003) Glutathione pathways in the brain. Biol Chem 384:505–516

    Article  PubMed  CAS  Google Scholar 

  • Duthie GG, Robertson JD, Maughan RJ, Morrice PC (1990) Blood antioxidant status and erythrocyte lipid peroxidation following distance running. Arch Biochem Biophys 282:78–83

    Article  PubMed  CAS  Google Scholar 

  • Ferris LT, Williams JS, Shen CL (2007) The effect of acute exercise on serum brain-derived neurotrophic factor levels and cognitive function. Med Sci Sports Exerc 39:728–734

    Article  PubMed  CAS  Google Scholar 

  • Flore P, Bricout VA, van Biesen D, Guinot M, Laporte F, Pépin JL, Eberhard Y, Favre-Juvin A, Wuyam B, van de Vliet P, Faure P (2008) Oxidative stress and metabolism at rest and during exercise in persons with Down syndrome. Eur J Cardiovasc Prev Rehabil 15:35–42

    PubMed  Google Scholar 

  • Garcez ME, Peres W, Salvador M (2005) Oxidative stress and hematologic and biochemical parameters in individuals with Down syndrome. Mayo Clin Proc 80:1607–1611

    PubMed  CAS  Google Scholar 

  • Gay CA, Gebicki JM (2002) Perchloric acid enhances sensitivity and reproducibility of the ferric-xylenol orange peroxide assay. Anal Biochem 304:42–46

    Article  PubMed  CAS  Google Scholar 

  • Gemus M, Palisano R, Russell D, Rosenbaum P, Walter SD, Galuppi B, Lane M (2001) Using the Gross Motor Function Measure to evaluate motor development in children with Down syndrome. Phys Occup Ther Pediatr 21:69–79

    PubMed  CAS  Google Scholar 

  • Goldfarb AH (1993) Antioxidants: role of supplementation to prevent exercise-induced oxidative stress. Med Sci Sports Exerc 25:232–236

    PubMed  CAS  Google Scholar 

  • Gualandri W, Gualandri L, Demartini G, Esposti R, Marthyn P, Volonta S, Stangoni L, Borgonovo M, Fraschini F (2003) Redox balance in patients with Down’s syndrome before and after dietary supplementation with alpha-lipoic acid and l-cysteine. Int J Clin Pharmacol Res 23:23–30

    PubMed  CAS  Google Scholar 

  • Harris SR (1981) Effects of neurodevelopmental therapy on motor performance of infants with Down’s syndrome. Dev Med Child Neurol 23:477–483

    PubMed  CAS  Google Scholar 

  • Hu Y, Russek SJ (2008) BDNF and the diseased nervous system: a delicate balance between adaptive and pathological processes of gene regulation. J Neurochem 105:1–17

    Article  PubMed  CAS  Google Scholar 

  • Hunsberger JG, Newton SS, Bennet AH, Duman CH, Russel DS, Salton SR, Duman RS (2007) Antidepressant actions of the exercise-regulated gene VGF. Nat Med 13:1476–1482

    Article  PubMed  CAS  Google Scholar 

  • Jette AM (2006) Toward a common language for function, disability, and health. Phys Ther 86:726–734

    PubMed  Google Scholar 

  • Ji LL (2001) Exercise at old age: does it increase or alleviate oxidative stress? Ann N Y Acad Sci 928:236–247

    Article  PubMed  CAS  Google Scholar 

  • Kanter MM, Nolte LA, Holloszy JO (1993) Effects of an antioxidant vitamin mixture on lipid peroxidation at rest and postexercise. J Appl Physiol 74:965–969

    PubMed  CAS  Google Scholar 

  • Levine RL, Garland D, Oliver CN, Amici A, Climent I, Lenz AG, Ahn BW, Stadtman ER (1990) Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol 186:464–478

    Article  PubMed  CAS  Google Scholar 

  • Lewis CL, Fragala-Pinkham MA (2005) Effects of aerobic conditioning and strength training on a child with Down syndrome: a case study. Pediatr Phys Ther 17:30–36

    Article  PubMed  Google Scholar 

  • Lott IT, Head E, Doran E, Busciglio J (2006) Beta-amyloid, oxidative stress and Down syndrome. Curr Alzheimer Res 5:521–528

    Article  Google Scholar 

  • Lowry OH, Rosebough NG, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  • Mazzone L, Mugno D, Mazzone D (2004) The general movements in children with Down syndrome. Early Hum Dev 79:119–130

    Article  PubMed  Google Scholar 

  • Monteiro CP, Varela A, Pinto M, Neves J, Felisberto GM, Vaz C, Bicho MP, Laires MJ (1997) Effect of an aerobic training on magnesium, trace elements and antioxidant systems in a Down syndrome population. Magnes Res 1:65–71

    Google Scholar 

  • Nagyova A, Sustrová M, Raslova K (2000) Serum lipid resistance to oxidation and uric acid levels in subjects with Down’s syndrome. Physiol Res 49:227–231

    PubMed  CAS  Google Scholar 

  • Ogawa O, Perry G, Smith MA (2002) The “Down’s” side of mitochondria. Dev Cell 2:255–256

    Article  PubMed  CAS  Google Scholar 

  • Ordonez FJ, Rosety M, Rosety-Rodriguez M (2006a) Regular exercise did not modify significantly superoxide dismutase activity in adolescents with Down’s syndrome. Br J Sports Med 8:717–718

    Article  Google Scholar 

  • Ordonez FJ, Rosety M, Rosety-Rodriguez M (2006b) Regular physical activity increases glutathione peroxidase activity in adolescents with Down syndrome. Clin J Sport Med 16(4):355–356

    Article  Google Scholar 

  • Palisano RJ, Walter SD, Russell DJ, Rosenbaum PL, Gémus M, Galuppi BE, Cunningham L (2001) Gross motor function of children with Down syndrome: creation of motor growth curves. Arch Phys Med Rehabil 82:494–500

    Article  PubMed  CAS  Google Scholar 

  • Pastor MC, Sierra C, Doladé M, Navarro E, Brandi N, Cabré E, Mira A, Serés A (1998) Antioxidant enzymes and fatty acid status in erythrocytes of Down’s syndrome patients. Clin Chem 44:924–929

    PubMed  CAS  Google Scholar 

  • Radak Z, Taylor AW, Ohno H, Goto S (2001) Adaptation to exercise-induced oxidative stress: from muscle to brain. Exerc Immunol Rev 7:90–107

    PubMed  CAS  Google Scholar 

  • Radak Z, Chung HY, Goto S (2008) Systemic adaptation to oxidative challenge induced by regular exercise. Free Radic Biol Med 44:153–159

    Article  PubMed  CAS  Google Scholar 

  • Robinson JA, Newton M (1977) A fluorescence polymorphism associated with Down’s syndrome? J Med Genet 1:40–45

    Article  Google Scholar 

  • Rose EA, Parfitt G (2007) A quantitative analysis and qualitative explanation of the individual differences in affective responses to prescribed and self-selected exercise intensities. J Sport Exerc Psychol 3:281–309

    Google Scholar 

  • Rosety-Rodriguez M, Rosety M, Ordonez FJ (2006) Influence of regular exercise on erythrocyte catalase activity in adolescents with Down syndrome. Med Clin 14:533–534

    Article  Google Scholar 

  • Sachdev S, Davies KJ (2008) Production, detection, and adaptive responses to free radicals in exercise. Free Radic Biol Med 44:215–223

    Article  PubMed  CAS  Google Scholar 

  • Sinha S (2005) Anti-oxidant gene expression imbalance, aging and Down syndrome. Life Sci 76:1407–1426

    Article  PubMed  CAS  Google Scholar 

  • Ulrich DA, Lloyd MC, Tiernan CW, Looper JE, Angulo-Barroso RM (2008) Effects of intensity of treadmill training on developmental outcomes and stepping in infants with Down syndrome: a randomized trial. Phys Ther 88:114–122

    PubMed  Google Scholar 

  • Vaynman S, Gomez-Pinilla F (2005) License to run: exercise impacts functional plasticity in the intact and injured central nervous system by using neurotrophins. Neurorehabil Neural Repair 19:283–295

    Article  PubMed  Google Scholar 

  • Wendel A (1981) Glutathione peroxidase. Methods Enzymol 77:325–333

    Article  PubMed  CAS  Google Scholar 

  • World Health Organization (2001) International classification of functioning, disability and health, Report by the Secretariat. In: International classification of functioning, disability and health. http://www.who.int/classifications/icf/site/icftemplate.cfm. Cited 3 July 2008

  • Wu J, Looper J, Ulrich BD, Ulrich DA, Angulo-Barroso RM (2007) Exploring effects of different treadmill interventions on walking onset and gait patterns in infants with Down syndrome. Dev Med Child Neurol 49:839–845

    Article  PubMed  Google Scholar 

  • Zana M, Janka Z (2007) Oxidative stress, a bridge between Down’s syndrome and Alzheimer’s disease. Neurobiol Aging 28:648–676

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by grants from Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES/MEC/Brazil) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq/MCT/Brazil).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aderbal S. Aguiar Jr.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aguiar, A.S., Tuon, T., Albuquerque, M.M. et al. The exercise redox paradigm in the Down’s syndrome: improvements in motor function and increases in blood oxidative status in young adults. J Neural Transm 115, 1643–1650 (2008). https://doi.org/10.1007/s00702-008-0120-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-008-0120-x

Keywords

Navigation