Skip to main content
Log in

Roles of GABAB receptor subtypes in presynaptic auto- and heteroreceptor function regulating GABA and glutamate release

  • Basic Neurosciences, Genetics and Immunology - Original Article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

An Erratum to this article was published on 10 March 2009

An Erratum to this article was published on 10 March 2009

Abstract

Γ-Aminobutyric acid B (GABAB) receptors are heterodimers composed of two subunits GABAB(1) and GABAB(2), the former existing in two isoforms GABAB(1a) and GABAB(1b). The contributions of individual receptor subunits and isoforms to GABAB auto- and heteroreceptor functions were investigated, using release experiments in cortical slice preparations from corresponding knockout mice. Presynaptic GABAB autoreceptors are located on GABAergic terminals and inhibit GABA release, whereas presynaptic GABAB heteroreceptors control the release of other neurotransmitters (e.g. glutamate). Neither baclofen nor the selective antagonist CGP55845 at maximally active concentrations affected [3H]GABA release in slices from GABAB(1)−/− mice. The amount of [3H]GABA released per pulse was unaffected by the stimulation frequency in slices from GABAB(1)−/− and GABAB(2)−/− demonstrating a loss of GABAB autoreceptor function in these knockout animals. The GABAB receptor agonist baclofen was ineffective in modulating glutamate release in cortical slices from GABAB(2)−/− mice, showing that heteroreceptor function was abolished as well. Next we investigated knockout mice for the two predominant GABAB(1) isoforms expressed in brain, GABAB(1a) and GABAB(1b). In cortical, hippocampal and striatal slices from both GABAB(1a)−/− and GABAB(1b)−/− mice, the frequency dependence of [3H]GABA released per pulse was maintained, suggesting that both isoforms participate or can substitute for each other in GABAB autoreceptor function. By contrast, the efficacy of baclofen to inhibit glutamate release was substantially reduced in GABAB(1a)−/−, but essentially unaltered in GABAB(1b)−/− mice. Our data suggest that functional GABAB heteroreceptors regulating glutamate release are predominantly, but not exclusively composed of GABAB(1a) and GABAB(2) subunits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AOAA:

Aminooxyacetic acid

GDH:

Glutamate dehydrogenase

Ko:

Knockout

l-trans-PDC:

l-trans-pyrrolidine-2,4-dicarboxylic acid

Wt:

Wildtype

References

  • Baumann PA, Wicki P, Stierlin C, Waldmeier PC (1990) Investigations on GABAB receptor-mediated autoinhibition of GABA release. Naunyn Schmiedebergs Arch Pharmacol 341:88–93

    Article  PubMed  CAS  Google Scholar 

  • Bettler B, Kaupmann K, Mosbacher J, Gassmann M (2004) Molecular structure and physiological functions of GABAB receptors. Physiol Rev 84:835–867

    Article  PubMed  CAS  Google Scholar 

  • Bischoff S, Leonhard S, Reymann N, Schuler V, Shigemoto R, Kaupmann K, Bettler B (1999) Spatial distribution of GABABR1 receptor mRNA and binding sites in the rat brain. J Comp Neurol 412:1–16

    Article  PubMed  CAS  Google Scholar 

  • Bonanno G, Raiteri M (1993) Multiple GABAB receptors. Trends Pharmacol Sci 14:259–261

    Article  PubMed  CAS  Google Scholar 

  • Cunningham MD, Enna SJ (1996) Evidence for pharmacologically distinct GABAB receptors associated with cAMP production in rat brain. Brain Res 720:220–224

    Article  PubMed  CAS  Google Scholar 

  • Fosse VM, Kolstad J, Fonnum F (1987) A bioluminescence method for the measurement of l-glutamate: applications to the study of changes in the release of l-glutamate from lateral geniculate nucleus and superior colliculus after visual cortex ablation in rats. J Neurochem 47:340–349

    Google Scholar 

  • Fritschy JM, Meskenaite V, Weinmann O, Honer M, Benke D, Mohler H (1999) GABAB-receptor splice variants GB1a and GB1b in rat brain: developmental regulation, cellular distribution and extrasynaptic localization. Eur J Neurosci 11:761–768

    Article  PubMed  CAS  Google Scholar 

  • Gassmann M, Shaban H, Vigot R, Sansig G, Haller C, Barbieri S, Humeau Y, Schuler V, Müller M, Kinzel B, Klebs K, Schmutz M, Froestl W, Heid J, Kelly PH, Gentry C, Jaton AL, Van der Putten H, Mombereau C, Lecourtier L, Mosbacher J, Cryan JF, Fritschy JM, Lüthi A, Kaupmann K, Bettler B (2004) Redistribution of GABAB(1) protein and atypical GABAB responses in GABAB(2)-deficient mice. J Neurosci 24:6086–6097

    Article  PubMed  CAS  Google Scholar 

  • Hawrot E, Xiao Y, Shi Q-L, Norman D, Kirkitadze M, Barlow PN (1998) Demonstration of a tandem pair of complement protein modules in GABAB receptor 1a. FEBS Lett 432:103–108

    Article  PubMed  CAS  Google Scholar 

  • Kaupmann K, Huggel K, Heid J, Flor PJ, Bischoff S, Mickel SJ, McMaster G, Angst C, Bittiger H, Froestl W, Bettler B (1997) Expression cloning of GABAB receptors uncovers similarity to metabotropic glutamate receptors. Nature 386:239–246

    Article  PubMed  CAS  Google Scholar 

  • Kaupmann K, Malitschek B, Schuler V, Heid J, Froestl W, Beck P, Mosbacher J, Bischoff S, Kulik A, Shigemoto R, Karschin A, Bettler B (1998a) GABAB-receptor subtypes assemble into functional heteromeric complexes. Nature 396:683–687

    Article  PubMed  CAS  Google Scholar 

  • Kaupmann K, Schuler V, Mosbacher J, Bischoff S, Bittiger H, Heid J, Froestl W, Leonhard S, Pfaff T, Karschin A, Bettler B (1998b) Human gamma-aminobutyric acid type B receptors are differentially expressed and regulate inwardly rectifying K+ channels. Proc Natl Acad Sci USA 95:14991–14996

    Article  PubMed  CAS  Google Scholar 

  • Lehtinen MJ, Meri S, Jokiranta TS (2004) Interdomain contact regions and angles between adjacent short consensus repeat domains. J Mol Biol 344:1385–1396

    Article  PubMed  CAS  Google Scholar 

  • Malitschek B, Rüegg D, Heid J, Kaupmann K, Bittiger H, Fröstl W, Bettler B, Kuhn R (1998) Developmental changes of agonist affinity at GABABR1 receptor variants in rat brain. Mol Cell Neurosci 12:56–64

    Article  PubMed  CAS  Google Scholar 

  • Pérez-Garci E, Gassmann M, Bettler B, Larkum ME (2006) The GABAB1b isoform mediates long-lasting inhibition of dendritic Ca2+ spikes in layer 5 somatosensory pyramidal neurons. Neuron 50:603–616

    Article  PubMed  Google Scholar 

  • Prosser HM, Gill CH, Hirst WD, Grau E, Robbins M, Calver A, Soffin EM, Farmer CE, Lanneau C, Gray J, Schenck E, Warmerdam BS, Clapham C, Reavill C, Rogers DC, Stean T, Upton N, Humphreys K, Randall A, Geppert M, Davies CH, Pangalos MN (2001) Epileptogenesis and enhanced prepulse inhibition in GABAB1-deficient mice. Mol Cell Neurosci 17:1059–1070

    Article  PubMed  CAS  Google Scholar 

  • Quéva S, Bremner-Danielsen M, Edlund A, Ekstrand AJ, Elg S, Erickson S, Johansson T, Lehmann A, Mattsson JP (2003) Effects of GABA agonists on body temperature regulation in GABAB(1)−/− mice. Br J Pharmacol 140:315–322

    Article  PubMed  Google Scholar 

  • Schuler V, Lüscher C, Blanchet C, Klix N, Sansig G, Klebs K, Schmutz M, Heid J, Gentry C, Urban L, Fox A, Spooren W, Jaton AL, Vigouret J-M, Pozza M, Kelly PH, Mosbacher J, Froestl W, Käslin E, Korn R, Bischoff S, Kaupmann K, Van der Putten H, Bettler B (2001) Epilepsy, hyperalgesia, impaired memory, and loss of pre- and postsynaptic GABAB responses in mice lacking GABAB(1). Neuron 31:47–58

    Article  PubMed  CAS  Google Scholar 

  • Shaban H, Humeau Y, Herry C, Cassasus G, Shigemoto R, Ciocchi S, Barbieri S, Van der Putten H, Kaupmann K, Bettler B, Lüthi A (2006) Generalization of amygdala LTP and conditioned fear in the absence of presynaptic inhibition. Nat Neurosci 9:1028–1035

    Article  PubMed  CAS  Google Scholar 

  • Steiger JL, Bandyopadhyay S, Farb DH, Russek SJ (2004) cAMP response element-binding protein, activating transcription factor-4, and upstream stimulatory factor differentially control hippocampal GABABR1a and GABABR1b subunit gene expression through alternative promoters. J Neurosci 24:6115–6126

    Article  PubMed  CAS  Google Scholar 

  • Thuault SJ, Brown JT, Sheardown SA, Jourdain S, Fairfax B, Spencer JP, Restituito S, Nation JHL, Topps S, Medhurst AD, Randall AD, Couve A, Moss SJ, Collingridge GL, Pangalos MN, Davies CH, Calver AR (2004) The GABAB2 subunit is critical for the trafficking and function of native GABAB receptors. Biochem Pharmacol 68:1655–1666

    Article  PubMed  CAS  Google Scholar 

  • Vigot R, Barbieri S, Bräuner-Osborne H, Turecek R, Shigemoto R, Zhang Y-P, Luján R, Jacobson LH, Biermann B, Fritschy J-M, Vacher CM, Müller M, Sansig G, Guetg N, Cryan JF, Kaupmann K, Gassmann M, Oertner T, Bettler B (2006) Differential compartmentalization and distinct functions of GABAB receptor variants. Neuron 50:589–601

    Article  PubMed  CAS  Google Scholar 

  • Waldmeier PC, Baumann PA (1990) GABAB receptors and transmitter release. In: Bowery NG, Bittiger H, Olpe HR (eds) GABAB receptors in mammalian function. Wiley, Chichester, pp 63–80

    Google Scholar 

  • Waldmeier PC, Hertz C, Wicki P, Grunenwald C, Baumann PA (1993a) Autoreceptor-mediated regulation of GABA release: role of uptake inhibition and effects of novel GABAB antagonists. Naunyn Schmiedebergs Arch Pharmacol 347:514–520

    Article  PubMed  CAS  Google Scholar 

  • Waldmeier PC, Wicki P, Feldtrauer J-J (1993b) Release of endogenous glutamate from rat cortical slices in presence of the glutamate uptake inhibitor l-trans-pyrrolidine-2,4-dicarboxylic acid. Naunyn Schmiedebergs Arch Pharmacol 348:478–485

    Article  PubMed  CAS  Google Scholar 

  • Waldmeier PC, Wicki P, Feldtrauer J-J, Mickel SJ, Bittiger H, Baumann PA (1994) GABA and glutamate release affected by GABAB receptor antagonists with similar potency: No evidence for pharmacologically different presynaptic receptors. Br J Pharmacol 113:1515–1521

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Dr. Johannes Mosbacher for his comments on the manuscript. We are grateful to Ms. Dominique Monna and Mr. Jean-Jacques Feldtrauer for their expert technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephan Urwyler.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s00702-009-0206-0

Rights and permissions

Reprints and permissions

About this article

Cite this article

Waldmeier, P.C., Kaupmann, K. & Urwyler, S. Roles of GABAB receptor subtypes in presynaptic auto- and heteroreceptor function regulating GABA and glutamate release. J Neural Transm 115, 1401–1411 (2008). https://doi.org/10.1007/s00702-008-0095-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-008-0095-7

Keywords

Navigation