Skip to main content

Advertisement

Log in

Neuroproteomics as a promising tool in Parkinson’s disease research

  • Parkinson's Disease and Allied Conditions - Review Article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

Despite the vast number of studies on Parkinson’s disease (PD), its effective diagnosis and treatment remains unsatisfactory. Hence, the relentless search for an optimal cure continues. The emergence of neuroproteomics, with its sophisticated techniques and non-biased ability to quantify proteins, provides a methodology with which to study the changes in neurons that are associated with neurodegeneration. Neuroproteomics is an emerging tool to establish disease-associated protein profiles, while also generating a greater understanding as to how these proteins interact and undergo post-translational modifications. Furthermore, due to the advances made in bioinformatics, insight is created concerning their functional characteristics. In this review, we first summarize the most prominent proteomics techniques and then discuss the major advances in the fast-growing field of neuroproteomics in PD. Ultimately, it is hoped that the application of this technology will lead towards a presymptomatic diagnosis of PD, and the identification of risk factors and new therapeutic targets at which pharmacological intervention can be aimed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

SNCA:

Alpha-synuclein

AD:

Alzheimer’s disease

SDS:

Dodecyl sulphate

DA:

Dopamine

ESI:

Electrospray ionization

L-DOPA:

Levodopa

LB:

Lewy bodies

MS:

Mass spectrometry

MPTP:

1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine

6-OHDA:

Parkinson’s disease

PD:

6-Hydroxydopamine

SNpc:

Substantia Nigra pars compacta

References

  • Abdi F, Quinn JF, Jankovic J, McIntosh M, Leverenz JB, Peskind E, Nixon R, Nutt J, Chung K, Zabetian C, Samii A, Lin M, Hattan S, Pan C, Wang Y, Jin J, Zhu D, Li GJ, Liu Y, Waichunas D, Montine TJ, Zhang J (2006) Detection of biomarkers with a multiplex quantitative proteomic platform in cerebrospinal fluid of patients with neurodegenerative disorders. J Alzheimers Dis 9:293–348

    PubMed  CAS  Google Scholar 

  • Aebersold R, Rist B, Gygi SP (2000) Quantitative proteome analysis: methods and applications. Ann NY Acad Sci 919:33–47

    PubMed  CAS  Google Scholar 

  • Aksenov MY, Aksenova MV, Butterfield DA, Geddes JW, Markesbery WR (2001) Protein oxidation in the brain in Alzheimer’s disease. Neuroscience 103:373–383

    PubMed  CAS  Google Scholar 

  • Alam Z, Daniel S, Lees A, Marsden D, Jenner P, Halliwell P (1997) A generalized increase in protein carbonyls in the brain in Parkinson’s but not incidental Lewy body disease. J Neurochem 69:1326–1329

    PubMed  CAS  Google Scholar 

  • Andersen JK (2004) Oxidative stress in neurodegeneration: cause or consequence? Nat Med 10:S18–S25

    PubMed  Google Scholar 

  • Arnaudeau S, Frieden M, Nakamura K, Castelbou C, Michalak M, Demaurex N (2002) Calreticulin differentially modulates calcium uptake and release in the endoplasmic reticulum and mitochondria. J Biol Chem 277:46696–46705

    PubMed  CAS  Google Scholar 

  • Ascherio A, Zhang SM, Hernan MA, Kawachi I, Colditz GA, Speizer FE, Willett WC (2001) Prospective study of caffeine consumption and risk of Parkinson’s disease in men and women. Ann Neurol 50:56–63

    PubMed  CAS  Google Scholar 

  • Ascherio A, Chen H, Weisskopf MG, O’Reilly E, McCullough ML, Calle EE, Schwarzschild MA, Thun MJ (2006) Pesticide exposure and risk for Parkinson’s disease. Ann Neurol 60:187–203

    Google Scholar 

  • Bandopadhyay R, Kingsbury AE, Cookson MR, Reid AR, Evans IM, Hope AD, Pittman AM, Lashley T, Canet-Aviles R, Miller DW, McLendon C, Strand C, Leonard AJ, Abou-Sleiman PM, Healy DG, Ariga H, Wood NW, de Silva R, Revesz T, Hardy JA, Lees AJ (2004) The expression of DJ-1 (PARK7) in normal human CNS and idiopathic Parkinson’s disease. Brain 127:420–430

    PubMed  Google Scholar 

  • Basso M, Giraudo S, Corpillo D, Bergamasco B, Lopiano L, Fasano M (2004) Proteome analysis of human substantia nigra in Parkinson’s disease. Proteomics 4:3943–3952

    PubMed  CAS  Google Scholar 

  • Beal MF (2003) Mitochondria, oxidative damage, and inflammation in Parkinson’s disease. Ann NY Acad Sci 991:120–131

    PubMed  CAS  Google Scholar 

  • Beal MF (2004) Mitochondrial dysfunction and oxidative damage in Alzheimer’s and Parkinson’s diseases and coenzyme Q10 as a potential treatment. J Bioenerg Biomembr 36:381–386

    PubMed  CAS  Google Scholar 

  • Benecke R, Strümper P, Weiss H (1993) Electron transfer complexes I and IV of platelets are abnormal in Parkinson’s disease but normal in Parkinson-plus syndromes. Brain 116:1451–1463

    PubMed  Google Scholar 

  • Bendiske J, Caba E, Brown QB, Bahr BA (2002) Intracellular deposition, microtubule destabilization, and transport failure: an “early” pathogenic cascade leading to synaptic decline. J Neuropathol Exp Neurol 61:640–650

    PubMed  CAS  Google Scholar 

  • Benedetti MD, Bower JH, Maraganore DM, McDonnell SK, Peterson BJ, Ahlskog JE, Schaid DJ, Rocca WA (2000) Smoking, alcohol, and coffee consumption preceding Parkinson’s disease. Neurology 55:1350–1358

    PubMed  CAS  Google Scholar 

  • Bernheimer H, Birkmayer W, Hornykiewicz O, Jellinger K, Seitelberger F (1973) Brain dopamine and the syndromes of Parkinson and Huntington. Clinical, morphological and neurochemical correlations. J Neurol Sci 20:415–455

    PubMed  CAS  Google Scholar 

  • Betarbet R, Sherer TB, MacKenzie G, Garcia-Osuna M, Panov AV, Greenamyre JT (2000) Chronic systemic pesticide exposure reproduces features of Parkinson’s disease. Nat Neurosci 3:1301–1306

    PubMed  CAS  Google Scholar 

  • Bindoff LA, Birch-Machin M, Cartilidge NE, Parker WD, Turnbull DM (1991) Respiratory chain abnormalities in skeletal muscle from patients with Parkinson’s disease. J Neurol Sci 104:203–208

    PubMed  CAS  Google Scholar 

  • Birkmayer W, Hornykiewicz O (1961) The effect of L-3,4-dihydroxyphenylalanine (L-DOPA) on akinesia in Parkinsonism. Wiener Klin. Wochenschr (1998) 73:787–788. Parkinsonism Relat Disord 4:59–60 (English translation)

  • Blennow K, Wallin A, Agren H, Spenger C, Siegfried J, Vanmechelen E (1995) Tau protein in cerebrospinal fluid: a biochemical marker for axonal degeneration in Alzheimer disease? Mol Chem Neuropathol 26:231–245

    PubMed  CAS  Google Scholar 

  • Bloch F, Houetto JL, Tezenas du Montcel S, Bonneville F, Etchepare F, Welter ML, Rivaud-Pechoux S, Hahn-Barma V, Maisonobe T, Behar C, Lazennec JY, Kurys E, Arnulf I, Bonnet AM, Agid Y (2006) Parkinson’s disease with camptocormia. J Neurol Neurosurg Psychiatry 77:1223–1228

    PubMed  CAS  Google Scholar 

  • Bonifati V, Rizzu P, van Baren MJ, Schaap O, Breedveld GJ, Krieger E, Dekker MC, Squitieri F, Ibanez P, Joosse M, van Dongen JW, Vanacore N, van Swieten JC, Brice A, Meco G, van Duijn CM, Oostra BA, Heutink P (2003) Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism. Science 299:256–259

    PubMed  CAS  Google Scholar 

  • Braak H, Del Tredici K, Rub U, de Vos RA, Jansen Steur EN, Braak E (2003) Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 24:197–211

    PubMed  Google Scholar 

  • Butterfield DA, Castegna A (2003) Proteomic analysis of oxidatively modified proteins in Alzheimer’s disease brain: insights into neurodegeneration. Amino Acids 25:419–425

    PubMed  CAS  Google Scholar 

  • Butterfield DA, Gnjec A, Poon HF, Castegna A, Pierce WM, Klein JB, Martins RN (2006) Redox proteomics identification of oxidatively modified brain proteins in inherited Alzheimer’s disease: an initial assessment. J Alzheimers Dis 10:391–397

    PubMed  CAS  Google Scholar 

  • Castegna A, Aksenov M, Thongboonkerd V, Klein JB, Pierce WM, Booze R, Markesbery WR, Butterfield DA (2002) Proteomic identification of oxidatively modified proteins in Alzheimer’s disease brain. Part II: Dihydropyrimidinase-related protein 2, alpha-enolase and heat shock cognate 71. J Neurochem 82:1524–1532

    PubMed  CAS  Google Scholar 

  • Chen F, David D, Ferrari A, Götz J (2004) Posttranslational modifications of tau: role in human tauopathies and modeling in transgenic animals. Curr Drug Targets 5:503–515

    PubMed  CAS  Google Scholar 

  • Chen L, Feany MB (2005) Alpha-synuclein phospohorylation controls neurotoxicity and inclusion formation in a Drosophila model of Parkinson’s disease. Nat Neurosci 8:657–663

    PubMed  CAS  Google Scholar 

  • Chen H, Zhang SM, Schwarzschild MA, Hernan MA, Ascherio A (2005a) Physical activity and the risk of Parkinson disease. Neurology 64:664–669

    PubMed  CAS  Google Scholar 

  • Chen Y, Wang Y, Yu H, Wang F, Xu W (2005b) The cross talk between protein kinase A- and RhoA-mediated signaling in cancer cells. Exp Biol Med 230:731–741

    CAS  Google Scholar 

  • Choi J, Levey AI, Weintraub ST, Rees HD, Gearing M, Chin LS, Li L (2004) Oxidative modifications and down-regulation of ubiquitin carboxyl-terminal hydrolase L1 associated with idiopathic Parkinson’s and Alzheimer’s diseases. J Biol Chem 279:13256–13264

    PubMed  CAS  Google Scholar 

  • Choi J, Rees HD, Weintraub ST, Levey AI, Chin LS, Li L (2005) Oxidative modifications and aggregation of Cu, Zn-superoxide dismutase associated with Alzheimer and Parkinson diseases. J Biol Chem 280:11648–11655

    PubMed  CAS  Google Scholar 

  • Clark I, Dodson M, Jiang C, Cao J, Huh J, Seol J, Yoo S, Hay B, Guo M (2006) Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin. Nature 441:1162–1166

    PubMed  CAS  Google Scholar 

  • Conway KA, Lee SJ, Rochet JC, Ding TT, Williamson RE, Lansbury PT (2000) Acceleration of oligomerization, not fibrillization, is a shared property of both alpha-synuclein mutations linked to early-onset Parkinson’s disease: implications for pathogenesis and therapy. Proc Natl Acad Sci USA 97:571–576

    PubMed  CAS  Google Scholar 

  • Conway KA, Rochet JC, Bieganski RM, Lansbury PT (2001) Kinetic stabilization of the alpha-synuclein protofibril by a dopamine-alpha-synuclein adduct. Science 294:1346–1349

    PubMed  CAS  Google Scholar 

  • Cookson MR (2005) The biochemistry of Parkinson’s disease. Annu Rev Biochem 74:29–52

    PubMed  CAS  Google Scholar 

  • Corthals GL, Wasinger VC, Hochstrasser DF, Wasinger VC, Hochstrasser DF, Sanchez JC (2000) The dynamic range of protein expression: a challenge for proteomic research. Electrophoresis 21:1104–1115

    PubMed  CAS  Google Scholar 

  • Dai J, Buijs RM, Kamphorst W, Swaab DF (2002) Impaired axonal transport of cortical neurons in Alzheimer’s disease is associated with neuropathological changes. Brain Res 948:138–144

    PubMed  CAS  Google Scholar 

  • Dauer W, Przedborski S (2003) Parkinson’s disease: mechanisms and models. Neuron 39:889–909

    PubMed  CAS  Google Scholar 

  • David DC, Hauptmann S, Scherping I, Schuessels K, Keil U, Rizzu P, Ravid R, Dröse S, Brandt U, Muller WE, Eckert A, Götz J (2005a) Proteomic and functional analysis reveal a mitochondrial dysfunction in P301L Tau transgenic mice. J Biol Chem 280:23802–23814

    PubMed  CAS  Google Scholar 

  • David DC, Hoerndli F, Götz J (2005b) Functional genomics meets neurodegenerative disorders. Part 1: Transcriptomic and proteomic technology. Progress Neurobiol 76:153–168

    CAS  Google Scholar 

  • David DC, Ittner LM, Gehrig P, Nergenau D, Shepherd C, Halliday G, Gotz J (2006) ß-Amyloid treatment of two complementary P301L tau-expressing Alzheimer’s disease models reveals similar deregulated cellular processes. Proteomics 6:6566–6577

    PubMed  CAS  Google Scholar 

  • Davidsson P, Sjögren M (2005) The use of proteomics in biomarker discovery in neurodegenerative diseases. Disease Markers 18:1–12

    Google Scholar 

  • Dawson TM, Dawson VL (2003) Molecular pathways of neurodegeneration in Parkinson’s disease. Science 302:819–822

    PubMed  CAS  Google Scholar 

  • De Hoog CL, Mann M (2004) Proteomics. Annu Rev Genomics Hum Genet 5:267–293

    PubMed  Google Scholar 

  • De Iuliis A, Grigoletto J, Recchia A, Giusti P, Arslan P (2005) A proteomic approach in the study of an animal model of Parkinson’s disease. Clin Chim Acta 357:202–209

    PubMed  Google Scholar 

  • Deumens R, Blokland A, Prickaerts J (2002) Parkinson’s disease in rats: an evaluation of 6-OHDA lesions of the nigrostriatal pathway. Exp Neurol 175:303–317

    PubMed  CAS  Google Scholar 

  • Dexter D, Wells F, Agid F, Agid Y, Lees AJ, Jenner P, Marsden CD (1987) Increased nigral iron content in postmortem parkisonian brain. Lancet 8569:1219–1220

    Google Scholar 

  • Dexter D, Sian J, Rose S, Hindmarsh JG, Mann VM, Cooper JM, Wells FR, Daniel SE, Lees AJ, Schapira AH et al (1994) Indices of oxidative stress and mitochondrial function in individuals with incidental Lewy body disease. Ann Neurol 35:38–44

    PubMed  CAS  Google Scholar 

  • Di Monte DA, McCormack A, Petzinger G, Janson AM, Quik M, Langston WJ (2000) Relationship among nigrostriatal denervation, parkinsonism, and dyskinesias in the MPTP primate model. Mov Disord 15:459–466

    PubMed  CAS  Google Scholar 

  • Escher N, Kaatz M, Melle M, Hipler C, Ziemer M, Driesch D, Wollina U, von Eggeling F (2007) Posttranslational modifications of transthyretin are serum markers in patients with mycosis fungiodes. Neoplasia 9:254–259

    PubMed  CAS  Google Scholar 

  • Feany MB, Bender WW (2000) A Drosophila model of Parkinson’s disease. Nature 404:394–398

    PubMed  CAS  Google Scholar 

  • Fialka I, Pasquali C, Lottspeich F, Ahorn H, Huber LA (1997) Subcellular fractionation of polarized epithelial cells and identification of organelle-specific proteins by two-dimensional gel electrophoresis. Electrophoresis 18:2582–2590

    PubMed  CAS  Google Scholar 

  • Finehout EJ, Franck Z, Lee KH (2005) Complement protein isoforms in CSF as possible biomarkers for neurodegenerative disease. Dis Markers 21:93–101

    PubMed  CAS  Google Scholar 

  • Fiskum G, Starkov A, Polster BM, Chinopoulos C (2003) Mitochondrial mechanisms of neural cell death and neuroprotective interventions in Parkinson’s disease. Ann NY Acad Sci 99:111–119

    Google Scholar 

  • Flament-Durand J, Couck AM (1979) Spongiform alterations in brain biopsies of presenile dementia. Acta Neuropathol (Berl) 46:159–162

    CAS  Google Scholar 

  • Fonteh AN, Harrington RJ, Huhmer AF, Biringer RG, Riggings JN, Harrington MG (2006) Identification of disease markers in human cerebrospinal fluid using lipidomic and proteomic methods. Dis Markers 22:39–64

    PubMed  CAS  Google Scholar 

  • Fornai F, Schluter OM, Lenzi P, Ruffoli R, Ferrucci M, Lazzeri G, Busceti CL, Pontarelli F, Battaglia G, Pellegrini A, Nicoletti F, Ruggieri S, Paparelli A, Südhof TC (2005) Parkinson-like syndrome induced by continuous MPTP infusion: Convergent roles of the ubiquitin-proteasome system and alpha-synuclein. Proc Natl Acad Sci USA 102:3413–3418

    PubMed  CAS  Google Scholar 

  • Forno LS, Langston JW, DeLanney LE, Irwin I, Ricaurte GA (1986) Locus coeruleus lesions and eosinophilic inclusions in MPTP-treated monkeys. Ann Neurol 20:449–455

    PubMed  CAS  Google Scholar 

  • Fountoulakis M (2001) Proteomics: current technologies and applications in neurological disorders and toxicology. Amino Acids 21:363–381

    PubMed  CAS  Google Scholar 

  • Fountoulakis M (2004) Application of proteomics technologies in the investigation of the brain. Mass Spectrom Rev 23:231–258

    PubMed  CAS  Google Scholar 

  • Fountoulakis M, Kossida S (2006) Proteomics-driven progress in neurodegeneration research. Electrophoresis 27:1556–1573

    PubMed  CAS  Google Scholar 

  • Fujiwara H, Hasegawa M, Dohmae N, Kawashima A, Masliah E, Goldberg MS, Shen J, Takio K, Iwatsubo T (2002) Alpha-synuclein is phosphorylated in synucleinopathy lesions. Nat Cell Biol 4:160–164

    PubMed  CAS  Google Scholar 

  • Gasser T (2005) Genetics of Parkinson’s disease. Curr Opin Neurol 18:363–369

    PubMed  CAS  Google Scholar 

  • Giasson BI, Duda JE, Murray IV, Chen Q, Souza JM, Hurtig HI, Ischiropoulos H, Trojanowski JQ, Lee VM (2000) Oxidative damage linked to neurodegeneration by selective alpha-synuclein nitration in synucleinopathy lesions. Science 294:1346–1349

    Google Scholar 

  • Giasson BI, Van Deerlin VM (2008) Mutations in LRRK2 as a cause of Parkinson’s disease. Neurosignals 16:99–105

    PubMed  CAS  Google Scholar 

  • Goedert M (2001) Alpha-synuclein and neurodegenerative diseases. Nat Rev Neurosci 2:492–501

    PubMed  CAS  Google Scholar 

  • Goldknopf IL, Sheta EA, Bryson J, Folsom B, Wilson C, Duty J, Yen AA, Appel SH (2006) Complement C3c and related protein biomarkers in amyotrophic lateral sclerosis and Parkinson’s disease. Biochem Biophys Res Commun 342:1034–1039

    PubMed  CAS  Google Scholar 

  • Goldman JE, Yen SH, Chiu FC, Peress NS (1983) Lewy bodies of Parkinson’s disease contain neurofilament antigens. Science 221:1082–1084

    PubMed  CAS  Google Scholar 

  • Gorell JM, Johnson CC, Rybicki BA, Peterson EL, Richardson RJ (1998) The risk of Parkinson’s disease with exposure to pesticides, farming, well water, and rural living. Neurology 50:1346–1350

    PubMed  CAS  Google Scholar 

  • Görg A, Postel W, Günther S, Weser J (1985) Improved horizontal two-dimensional electrophoresis with hybrid isoelectric focusing in immobilized pH gradients in the first dimension and laying-on transfer to the second dimension. Electrophoresis 12:653–658

    Google Scholar 

  • Götz J, Tolnay M, Barmettler R, Ferrari A, Bürki K, Goedert M, Probst A, Nitsch RM (2001) Human tau transgenic mice. Towards an animal model for neuro- and glialfibrillary lesion formation. Adv Exp Med Biol 487:71–83

    PubMed  Google Scholar 

  • Götz J, Streffer JR, David D, Schild A, Hoerndli F, Pennanen L, Kurosinski P, Chen F (2004) Transgenic animal models of Alzheimer’s disease and related disorders: Histopathology, behavior and therapy. Mol Psychiatry 9:664–683

    PubMed  Google Scholar 

  • Götz J, Ittner LM, Kins S (2006) Do axonal defects in tau and amyloid precursor protein transgenic animals model axonopathy in Alzheimer’s disease? J Neurochem 98:993–1006

    PubMed  Google Scholar 

  • Götz J, Deters N, Doldissen A, Bokhari L, Ke Y, Wiesner A, Schonrock N, Ittner LM (2007) A decade of tau transgenic animal models and beyond. Brain Pathol 17:91–103

    PubMed  Google Scholar 

  • Götz J, David D, Hoerndli F, Ke YD, Schonrock N, Wiesner A, Fath T, Bokhari L, Lim YA, Deters N, Ittner LM (2008) Functional genomics dissects pathomechanisms in tauopathies: mitosis failure and unfolded protein response. Neurodegener Dis 5:179–181

    PubMed  Google Scholar 

  • Graves PR, Haystead TA (2002) Molecular biologist’s guide to proteomics. Microbiol Mol Biol Rev 66:39–63

    PubMed  CAS  Google Scholar 

  • Greene JC, Whitworth AJ, Kuo I, Andrews LA, Feany MB, Pallanck LJ (2003) Mitochondrial pathology and apoptotic muscle degeneration in Drosophila parkin mutants. Proc Natl Acad Sci USA 100:4078–4083

    PubMed  CAS  Google Scholar 

  • Gu M, Cooper JM, Taanman JW, Schapira AHV (1998) Mitochondrial DNA transmission of the mitochondrial defect in Parkinson’s disease. Ann Neurol 44:177–186

    PubMed  CAS  Google Scholar 

  • Gygi SP, Rist B, Gerber SA, Turecek F, Gelb MH, Aebersold R (1999) Quantitative analysis of complex protein mixtures using isotope coded affinity tags. Nat Biotechnol 17:994–999

    PubMed  CAS  Google Scholar 

  • Haas RH, Nasirian F, Nakano K, Ward D, Pay M, Hill R, Shults CW (1995) Low platelet mitochondrial complex I and complex II/III activity in early untreated Parkinson’s disease. Ann Neurol 37:714–722

    PubMed  CAS  Google Scholar 

  • Hanash S (2004) HUPO initiatives relevant to clinical proteomics. Mol Cell Proteomics 3:298–301

    PubMed  CAS  Google Scholar 

  • Hardy J, Cookson MR, Singleton A (2003) Genes and parkinsonism. Lancet Neurol 2:221–228

    PubMed  CAS  Google Scholar 

  • Hardy J, Cai H, Cookson MR, Gwinn-Hardy K, Singleton A (2006) Genetics of Parkinson’s disease and parkinsonism. Ann Neurol 60:389–398

    PubMed  CAS  Google Scholar 

  • Hansen L, Cai H, Cookson MR, Gwinn-Hardy K, Singleton A (1990) The Lewy body variant of Alzheimer’s disease: a clinical and pathologic entity. Neurology 40:1–8

    PubMed  CAS  Google Scholar 

  • He Y, Le WD, Appel SH (2002) Role of fcgamma receptors in nigral cell injury induced by Parkinson’s disease immunoglobulin injection into mouse substantia niga. Exp Neurol 176:322–327

    PubMed  CAS  Google Scholar 

  • Heimlick G, Cidlowski JA (2006) Selective role of intracellular chloride in the regulation of the intrinsic but not extrinsic pathway of apoptosis in Jurkat T-cells. J Biol Chem 281:2232–2241

    Google Scholar 

  • Hernan MA, Takkouche B, Caamano-Isorna F, Gestal-Otero JJ (2002) A meta-analysis of coffee drinking, cigarette smoking, and the risk of Parkinson’s disease. Ann Neurol 52:276–284

    PubMed  Google Scholar 

  • Hoving S, Gerrits B, Voshol H, Müller D, Roberts RC, van Oostrum J (2002) Preparative two-dimensional gel electrophoresis at alkaline pH using narrow range immobilized pH gradients. Proteomics 2:127–134

    PubMed  CAS  Google Scholar 

  • Hutchens TW, Yip TT (1993) New desorption strategies for the mass spectrometric analysis of macromolecules. Rapid Commun Mass Spectrom 7:576–580

    CAS  Google Scholar 

  • Hoerndli F, David DC, Götz J (2005) Functional Genomics meets neurodegenerative disorders. Part II: application and data integration. Prog Neurobiol 76:169–188

    PubMed  CAS  Google Scholar 

  • Hoglinger GU, Carrard G, Michel PO, Medja F, Lombes A, Ruberg M, Friguet B, Hirsch EC (2003) Dysfunction of mitochondrial complex I and the proteasome: interactions between two biochemical deficits in a cellular model of Parkinson’s disease. J Neurochem 86:1297–1307

    Article  PubMed  CAS  Google Scholar 

  • Horvatovich P, Govorukhina NI, Reijmers TH, van der Zee AG, Suits F, Bischoff R (2007) Chip-LC-MS for label-free profiling of human serum. Electrophoresis 28:4493–4505

    PubMed  CAS  Google Scholar 

  • Hourcade DE, Mitchell L, Kuttner-Kondo LA, Atkinson JP, Medof ME (2002) Decay-accelerating factor (DAF), complement receptor 1 (CR1), and factor H dissociate the complement AP C3 convertase (C3bBb) via sites on the type A domain of Bb. J Biol Chem 277:1107–1112

    PubMed  CAS  Google Scholar 

  • Huber LA, Pfaller K, Vietor K (2003) Organelle proteomics: implications for subcellular fractionation in proteomics. Circ Res 92:962–968

    PubMed  CAS  Google Scholar 

  • Hühmer AF, Biringer RG, Amato H, Fonteh AN, Harrington MG (2006) Protein analysis in human cerebrospinal fluid: physiological aspects, current progress and future challenges. Disease Markers 22:2–26

    Google Scholar 

  • Ichikawa H, Sugimoto T (2005) Peptide 19 in the rat vagal and glossopharyngeal sensory ganglia. Brain Res 1038:107–112

    PubMed  CAS  Google Scholar 

  • Jain KK (2004) Role of pharmacoproteomics in the development of personalized medicine. Pharmacogenomics 5:331–336

    PubMed  CAS  Google Scholar 

  • Jensen PH, Hager H, Nielsen MS, Højrup P, Gliemaann J, Jakes R (1999) α-Synuclein binds to tau and stimulates the protein kinase A-catalyzed tau phosphorylation of serine residues 262 and 356. J Biol Chem 274:25481–25489

    PubMed  CAS  Google Scholar 

  • Jin J, Meredith GE, Chen L, Zhou Y, Xu J, Shie FS, Lockhart P, Zhang J (2005) Quantitative proteomic analysis of mitochondrial proteins: relevance to Lewy body formation and Parkinson’s disease. Mol Brain Res 134:119–138

    PubMed  CAS  Google Scholar 

  • Jin J, Li GJ, Davis J, Zhu D, Wang Y, Pan C, Zhang J (2007) Identification of novel proteins associated with both alpha-synuclein and DJ–1. Mol Cell Proteomics 6:845–859

    PubMed  CAS  Google Scholar 

  • Johanson RA, Sarau HM, Foley JJ, Slemmon JR (2000) Calmodulin Binding Peptide PEP–19 Modulates Activation of Calmodulin Kinase II in situ. J Neurosci 20:2860–2866

    PubMed  CAS  Google Scholar 

  • Johnson MD, Yu LR, Conrads TP, Kinoshita Y, Uo T, McBee JK, Veenstra TD, Morrison RS (2005) The proteomics of neurodegeneration. Am J Pharmacogenomics 5:259–270

    PubMed  CAS  Google Scholar 

  • Jorge I, Casas EM, Villar M, Ortega-Pérez I, López-Ferrer D, Martínez-Ruiz A, Carrera M, Marina A, Martínez P, Serrano H, Cañas B, Were F, Gallardo JM, Lamas S, Redondo JM, García-Dorado D, Vázquez J (2007) High-sensitivity analysis of specific peptides in complex samples by selected MS/MS ion monitoring and linear ion trap mass spectrometry: Application to biological studies. J Mass Spectrom 42:1391–1403

    PubMed  CAS  Google Scholar 

  • Kaur D, Yantiri F, Rajagopalan S, Kumar J, Mo JQ, Boonplueang R, Viswanath V, Jacobs R, Yang L, Beal MF, DiMonte D, Volitaskis I, Ellerby L, Cherny RA, Bush AI, Andersen JK (2003) Genetic or pharmacological iron chelation prevents MPTP-induced neurotoxicity in vivo: A novel therapy for Parkinson’s disease. Neuron 37:899–909

    PubMed  CAS  Google Scholar 

  • Kinumi T, Kimata J, Taira T, Ariga H, Niki E (2004) Cysteine-106 of DJ-1 is the most sensitive cysteine residue to hydrogen peroxide-mediated oxidation in vivo in human. Biochem Biophys Res Commun 317:722–728

    PubMed  CAS  Google Scholar 

  • Kirik D, Rosenblad C, Burger C, Lundberg C, Johansen TE, Muzyczka N, Mandel RJ, Bjorklund A (2002) Parkinson-like neurodegeneration induced by targeted overexpression of alpha-synuclein in the nigrostriatal system. J Neurosci 22:2780–2791

    PubMed  CAS  Google Scholar 

  • Kitada T, Asakawa S, Hattori N, Matsumine H, Yamamura Y, Minoshima S, Yokochi M, Mizuno Y, Shimizu N (1998) Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 392:605–608

    PubMed  CAS  Google Scholar 

  • Klein C, Lohmann-Hedrich K (2007) Impact of recent genetic findings in Parkinson’s disease. Curr Opin Neurol 20:453–464

    PubMed  CAS  Google Scholar 

  • Klose J (1975) Protein mapping by combined isoelectric focusing and electrophoresis of mouse tissues. A novel approach to testing for induced point mutations in mammals. Humangenetik 26:231–243

    PubMed  CAS  Google Scholar 

  • Klucken J, Shin Y, Hyman BT, McLean PJ (2004) A single amino acid substitution differentiates Hsp70-dependent effects on alpha-synuclein degradation and toxicity. Biochem Biophys Res Commun 325:367–373

    PubMed  CAS  Google Scholar 

  • Kurosinski P, Guggisberg M, Götz J (2002) Alzheimer’s and Parkinson’s disease - overlapping or synergistic pathologies? Trends Mol Med 8:3–5

    PubMed  CAS  Google Scholar 

  • Krüger R, Kuhn W, Müller T, Woitalla D, Graeber M, Kösel S, Przuntek H, Epplen JT, Schöls L, Riess O (1998) Ala30Pro mutation in the gene encoding alpha-synuclein in Parkinson’s disease. Nat Genet 18:106–108

    PubMed  Google Scholar 

  • Lee MY, Park SE, Chung KC, Oh YJ (2003) Proteomic analysis reveals upregulation of calreticulin in murine dopaminergic neuronal cells after treatment with 6-hydroxidopamine. Neurosci Lett 352:17–20

    PubMed  CAS  Google Scholar 

  • Lee WD, Appel SH (2004) Mutant genes responsible for Parkinson’s disease. Curr Opin Pharmacol 4:79–84

    CAS  Google Scholar 

  • Lee SJ (2008) Origins and effects of extracellular alpha-synuclein: Implications in Parkinson’s disease. J Mol Neurosci 34:17–22

    PubMed  CAS  Google Scholar 

  • Leroy E, Boyer R, Auburger G, Leube B, Ulm G, Mezey E, Harta G, Brownstein MJ, Jonnalagada S, Chernova T, Dehejia A, Lavedan C, Gasser T, Steinbach PJ, Wilkinson KD, Polymeropoulos MH (1998) The ubiquitin pathway in Parkinson’s disease. Nature 395:451–452

    PubMed  CAS  Google Scholar 

  • Limousin P, Krack P, Pollak P, Benazzouz A, Ardouin C, Hoffmann D, Benabid AL (1998) Electrical stimulation of the subthalamic nucleus in advanced Parkinson’s disease. N Engl J Med 339:1105–1111

    PubMed  CAS  Google Scholar 

  • Link AJ, Eng J, Schieltz DM, Carmack E, Mize GJ, Morris DR, Garvik BM, Yates JRIII (1999) Direct analysis of protein complexes using mass spectrometry. Nat Biotechnol 17:676–682

    PubMed  CAS  Google Scholar 

  • Lippa CF, Fujiwara H, Mann DM, Giasson B, Baba M, Schmidt ML, Nee LE, O’Connell B, Pollen DA, St George-Hyslop P, Ghetti B, Nochlin D, Bird TD, Cairns NJ, Lee VM, Iwatsubo T, Trojanowski JQ (1998) Lewy bodies contain altered alpha-synuclein in brains of many familial Alzheimer’s disease patients with mutations in presenilin and amyloid precursor protein genes. Am J Pathol 153:1365–1370

    PubMed  CAS  Google Scholar 

  • Lipton MS, Pasa-Tolic L, Anderson GA (2002) Global analysis of the deinococcus radiodurans proteome by using accurate mass tags. Proc Natl Acad Sci USA 99:11049–11054

    PubMed  CAS  Google Scholar 

  • Liu H, Miller E, van de Water B, Stevens JL (2001) Endoplasmic reticulum stress proteins block oxidant-5nd 4ced Ca2+ increase and cell death. J Biol Chem 273:12858–12862

    Google Scholar 

  • Liu H, Zang Y, Wang J, Wang D, Zhou C, Cai Y, Qian X (2006) Method for quantitative proteomics research by using metal element chelated tags coupled with mass spectrometry. Anal Chem 78:6614–6621

    PubMed  CAS  Google Scholar 

  • Lopes MF, Melov S (2002) Applied proteomics: Mitochondrial proteins and effect on function. Circ Res 90:380–389

    Google Scholar 

  • Manetto V, Perry G, Tabaton M, Mulvihill P, Fried VA, Smith HT, Gambetti P, Autilio-Gambetti L (1988) Ubiquitin is associated with abnormal cytoplasmic filaments characteristic of neurodegenerative diseases. Proc Natl Acad Sci USA 85:4501–4505

    PubMed  CAS  Google Scholar 

  • Manning-Boğ AB, McCormack AL, Li J, Uversky VN, Fink AL, Di Monte DA (2002) The herbicide paraquat causes up-regulation and aggregation of alpha-synuclein in mice: paraquat and alpha-synuclein. J Biol Chem 277:1641–1644

    PubMed  Google Scholar 

  • Matsuoka Y, Vila M, Lincoln S, McCormack A, Picciano M, LaFrancois J, Yu X, Dickson D, Langston WJ, McGowan E, Farrer M, Hardy J, Duff K, Przedborski S, Di Monte DA (2001) Lack of nigral pathology in transgenic mice expressing human alpha-synuclein driven by the tyrosine hydroxylase promoter. Neurobiol Dis 8:535–539

    PubMed  CAS  Google Scholar 

  • Mercken M, Fischer I, Kosik KS, Nixon RA (1995) Three distinct axonal transport rates for tau, tubulin and other microtubule-associated proteins: evidence for dynamic interactions of tau with microtubules in vivo. J Neurosci 15:8259–8267

    PubMed  CAS  Google Scholar 

  • Meyer HE, Stuhler K (2007) High-performance proteomics as a tool in biomarker discovery. Proteomics 7:18–26

    PubMed  Google Scholar 

  • Michell AW, Lewis SJG, Foltynie T, Barker RA (2004) Biomarkers and Parkinson’s disease. Brain 127:1693–1705

    PubMed  CAS  Google Scholar 

  • Miksys S, Tyndale RF (2006) Nicotine induces brain CYP enzymes: Relevance to Parkinson’s disease. J Neural Transm Suppl 70:177–180

    Article  PubMed  CAS  Google Scholar 

  • Miller N, Noble E, Jones D, Burn D (2006) Hard to swallow: dysphagia in Parkinson’s disease. Age Ageing 35:614–618

    PubMed  Google Scholar 

  • Mitsumoto A, Nakagawa Y (2001) DJ-1 is an indicator for endogenous reactive oxygen species elicited by endotoxin. Free Radic Res 35:885–893

    PubMed  CAS  Google Scholar 

  • Mitsumoto A, Nakagawa Y, Takeuchi A, Okawa K, Iwamatsu A, Takanezawa Y (2001) Oxidized forms of peroxiredoxins and DJ-1 on two-dimensional gels increased in response to sublethal levels of paraquat. Free Radic Res 35:301–310

    PubMed  CAS  Google Scholar 

  • Montgomery EB Jr, Koller WC, LaMantia TJ, Newman MC, Swanson-Hyland AW, Kaszniak AW, Lyons K (2000a) Early detection of probable idiopathic Parkinson’s disease I. Development of a diagnostic test battery. Mov Disord 15:467–473

    PubMed  Google Scholar 

  • Montgomery EB Jr, Lyons K, Koller WC (2000b) Early detection of probable idiopathic Parkinson’s disease II. A prospective application of a diagnostic test battery. Mov Disord 15:474–478

    PubMed  Google Scholar 

  • Moseley MA (2001) Current trends in differential expression proteomics: Isotopically coded tags. Trends Biotechnol 19:S10–S16

    PubMed  CAS  Google Scholar 

  • Mueller LN, Rinner O, Schmidt A, Letarte S, Bodenmiller B, Brusniak MY, Vitek O, Aebersold R, Müller M (2007) SuperHirn—a novel tool for high resolution LC-MS-based peptide/protein profiling. Proteomics 7:3470–3480

    PubMed  CAS  Google Scholar 

  • Murakami T, Shoji M, Imai Y, Inoue H, Kawarabayashi T, Matsubara E, Harigaya Y, Sasaki A, Takahashi R, Abe K (2004) Pael-R is accumulated in Lewy bodies of Parkinson’s disease. Ann Neurol 55:439–442

    PubMed  CAS  Google Scholar 

  • Nakamura K, Bossy-Wetzel E, Burns K, Fadel MP, Lozyk M, Goping IS, Opas M, Bleackley RC, Green DR, Michalak M (2000) Changes in endoplasmic reticulum luminal environment affect cell sensitivity to apoptosis. J Cell Biol 150:731–740

    PubMed  CAS  Google Scholar 

  • Neumann M, Muller V, Gorner K, Kretzschmar HA, Haas C, Kahle PJ (2004) Pathological properties of the Parkinson’s disease associated protein DJ-1 in alpha-synucleinopathies and tauopathies: relevance for multiple system atrophy and Pick’s disease. Acta Neuropathol (Berl) 107:489–496

    CAS  Google Scholar 

  • Nissbaum RL, Ellis C (2003) Alzheimer’s disease and Parkinson’s disease. N Engl J Med 348:1356–1364

    Google Scholar 

  • Nunez MT, Osorio A, Tapia V, Vergara A, Mura CV (2001) Iron-induced oxidative stress up-regulates calreticulin levels in intestinal epithelial (Caco-2) cells. J Cell Biochem 82:660–665

    PubMed  CAS  Google Scholar 

  • O’Farrell PH (1975) High resolution two-dimensional electrophoresis of proteins. J Biol Chem 250:4007–4021

    PubMed  CAS  Google Scholar 

  • Olanow CW, Tatton WG (1999) Etiology and pathogenesis of Parkinson’s disease. Annu Rev Neurosci 22:123–144

    PubMed  CAS  Google Scholar 

  • Olsen JV, Andersen JR, Nielsen PA, Nielsen ML, Figeys D, Mann M, Wisniewski JR (2004) HysTag–a novel proteomic quantification tool applied to differential display analysis of membrane proteins from distinct areas of mouse brain. Mol Cell Proteomics 3:82–92

    PubMed  CAS  Google Scholar 

  • Onn SE, Mann M (2005) Mass spectrometry-based proteomics turn quantitative. Nat Chem Biol 1:252–262

    Google Scholar 

  • Opiteck GJ, Lewis KC, Jorgenson JW, Anderegg RJ (1997) Comprehensive on-line LC/LC/MS of proteins. Anal Chem 69:1518–1524

    PubMed  CAS  Google Scholar 

  • Paciello O, Wojcik S, Engel WK, McFerrin J, Askanas V (2006) Parkin and its association with alpha-synuclein and AbetaPP in inclusion-body myositis and AbetaPP—overexpressing cultured human muscle fibers. Acta Myol 25:13–22

    PubMed  CAS  Google Scholar 

  • Palacino JJ, Sagi D, Goldberg MS, Krauss S, Motz C, Wacker M, Klose J, Shen J (2004) Mitochondrial dysfunction and oxidative damage in parkin-deficient mice. J Biol Chem 279:18614–18622

    PubMed  CAS  Google Scholar 

  • Pan S, Rush J, Peskind ER, Galasko D, Chung K, Quinn J, Jankovic J, Leverenz JB, Zabetian C, Pan C, Wang Y, Oh JH, Gao J, Zhang J, Montine T, Zhang J (2008) Application of targeted quantitative proteomics analysis in human cerebrospinal fluid using a liquid chromatography matrix-assisted laser desorption/ionization time-of-flight tandem mass spectrometer (LC MALDI TOF/TOF) platform. J Proteome Res 7:720–730

    PubMed  CAS  Google Scholar 

  • Pandey A, Mann M (2000) Proteomics to study genes and genomes. Nature 405:837–846

    PubMed  CAS  Google Scholar 

  • Pannese E, Procacci P, Ledda M (1996) Ultrastructural localization of actin in then cell biology of rat spinal ganglion neurons. Anat Embryol 194:527–531

    PubMed  CAS  Google Scholar 

  • Park J, Lee SB, Lee S, Kim Y, Song S, Kim S, Bae E, Kim J, Shong M, Kim JM, Chung J (2006) Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin. Nature 441:1157–1161

    PubMed  CAS  Google Scholar 

  • Parker WD, Boyson SJ, Parks JK (1989) Abnormalities of the electron transport chain in idiopathic Parkinson’s disease. Ann Neurol 26:719–723

    PubMed  Google Scholar 

  • Parker WD, Parks JK, Swerdlow RH (2008) Complex I deficiency in Parkinson’s disease frontal cortex. Brain Res 1189:215–218

    PubMed  CAS  Google Scholar 

  • Pasquali C, Fialka I, Huber LA (1997) Preparative two-dimensional gel electrophoresis of membrane proteins. Electrophoresis 18:2573–2581

    PubMed  CAS  Google Scholar 

  • Paweletz CP, Trock B, Pennanen M, Tsangaris T, Magnant C, Liotta LA, Petricoin EFIII (2001) Proteomic patterns of nipple aspirate fluids obtained by SELDI-TOF: potential for new biomarkers to aid in the diagnosis of breast cancer. Dis Markers 17:301–307

    PubMed  CAS  Google Scholar 

  • Periquet M, Corti O, Jacquier S, Brice A (2005) Proteomic analysis of parkin knockout mice: alterations in energy metabolism, protein handling and synaptic function. J Neurochem 95:1259–1276

    PubMed  CAS  Google Scholar 

  • Polymeropoulos MH, Lavedan C, Leroy E, Ide SE, Dehejia A, Dutra A, Pike B, Root H, Rubenstein J, Boyer R, Stenroos ES, Chandrasekharappa S, Athanassiadou A, Papapetropoulos T, Johnson WG, Lazzarini AM, Duvoisin RC, Di Iorio G, Golbe LI, Nussbaum RL (1997) Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science 276:2045–2047

    PubMed  CAS  Google Scholar 

  • Praprotnik D, Smith MA, Richey PL, Vinters HV, Perry G (1996) Filament heterogeneity within the dystrophic neurites of senile plaques suggests blockage of fast axonal transport in Alzheimer’s disease. Acta Neuropathol 91:226–235

    PubMed  CAS  Google Scholar 

  • Racette BA, Tabbal SD, Jennings D, Good L, Perlmutter JS, Evanoff B (2005) Prevalence of parkinsonism and relationship to exposure in a large sample of Alabama welders. Neurology 64:230–235

    PubMed  CAS  Google Scholar 

  • Rego AC, Oliveira CR (2003) Mitochondrial dysfunction and reactive oxygen species in excitotoxicity and apoptosis: implications for the pathogenesis of neurodegenerative diseases. Neurochem Res 28:1563–1574

    PubMed  CAS  Google Scholar 

  • Reinders J, Lewandrowski U, Moebius J, Wagner Y, Sickmann A (2004) Challenges in mass spectrometry-based proteomics. Proteomics 4:3686–3703

    PubMed  CAS  Google Scholar 

  • Richard S, Brion J-P, Couck AM, Flament-Durand J (1989) Accumulation of smooth endoplasmic reticulum in Alzheimer’s disease: new morphological evidence of axoplasmic flow disturbances. J Submicrosc Cytol Pathol 21:461–467

    PubMed  CAS  Google Scholar 

  • Riederer P, Wuketich S (1976) Time course of nigrostriatal degeneration in parkinson’s disease: a detailed study of influential factors in human brain amine analysis. J Neural Transm 38:277–301

    PubMed  CAS  Google Scholar 

  • Righetti PG, Campostrini N, Pascali J, Hamdan M, Astner H (2004) Quantitative proteomics: a review of different methodologies. Eur J Mass Spectrom 10:335–348

    CAS  Google Scholar 

  • Romeo M, Espina V, Lowenthal M, Espina BH, Petricoin EF, Liotta LA (2005) CSF proteome: a protein repository for potential biomarker identification. Expert Rev Proteomics 2:57–70

    PubMed  CAS  Google Scholar 

  • Ross GW, Abbott RD, Petrovitch H, Morens DM, Grandinetti A, Tung KH, Tanner CM, Masaki KH, Blanchette PL, Curb JD, Popper JS, White LR (2000) Association of coffee and caffeine intake with risk of Parkinson’s disease. JAMA 283:2674–2679

    PubMed  CAS  Google Scholar 

  • Schapira AHV, Cooper JM, Dexter D, Jenner P, Clark JB, Marsden CD (1989) Mitochondrial complex I deficiency in Parkinson’s disease. Lancet 1:1269

    PubMed  CAS  Google Scholar 

  • Schapira AH, Cooper JM, Dexter D, Clark JB, Jenner P, Marsden CD (1990) Mitochondrial complex I deficiency in Parkinson’s disease. J Neurochem 54:823–827

    PubMed  CAS  Google Scholar 

  • Schapira AH (1998) Mitochondrial dysfunction in neurodegenerative disorders. Biochem Biophys Acta 1366:225–233

    PubMed  CAS  Google Scholar 

  • Schapira AH (2004) Disease modification in Parkinson’s disease. Lancet Neurol 3:362–368

    PubMed  CAS  Google Scholar 

  • Schmidt A, Kellermann J, Lottspeich F (2005) A novel strategy for quantitative proteomics using isotope-coded protein labels. Proteomics 5:4–15

    PubMed  CAS  Google Scholar 

  • Schulenborg T, Schmidt O, van Hall A, Meyer HE, Hamacher M, Marcus K (2006) Proteomics in neurodegeneration—disease driven approaches. J Neural Transm 113:1055–1073

    PubMed  CAS  Google Scholar 

  • Seniuk NA, Tatton WG, Greenwood CE (1990) Dose-dependent destruction of the coeruleus-cortical and nigral-striatal projections by MPTP. Brain Res 527:7–20

    PubMed  CAS  Google Scholar 

  • Setsuie R, Wada K (2007) The functions of UCH-L1 and its relation to neurodegenerative diseases. Neurochem Internat 51:105–111

    CAS  Google Scholar 

  • Shahani N, Brandt R (2002) Functions and malfunctions of the tau-proteins. Cell Mol Life Sci 59:1668–1680

    PubMed  CAS  Google Scholar 

  • Shen J, Cookson M (2004) Mitochondria and dopamine: new insights into recessive parkinsonism. Neuron 43:301–304

    PubMed  CAS  Google Scholar 

  • Shendelman S, Jonason A, Martinat C, Leete T, Abeliovich A (2004) DJ-1 is a redox-dependent molecular chaperone that inhibits alpha-synuclein aggregate formation. PLoS Biol 2:e362

    PubMed  Google Scholar 

  • Sheta EA, Appel SH, Goldknopf IL (2006) 2-D gel blood serum biomarkers reveal differential clinical proteomics of the neurodegenerative diseases. Expert Rev Proteomics 3:45–62

    PubMed  CAS  Google Scholar 

  • Shoffner JM, Watts RL, Juncos JL, Torroni A, Wallace DC (1991) Mitochondrial oxidative phosporylation defects in Parkinson’s disease. Ann Neurol 30:332–339

    PubMed  CAS  Google Scholar 

  • Simpson RJ (2003) Purifying proteins for proteomics: a laboratory manual. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Sjögren M, Davidsson P, Tullberg L, Minthon L, Wallin A, Wikkelso C, Granérus AK, Vanderstichele H, Vanmechelen E, Blennow K (2001) Both total and phosphorylated tau are increased in Alzheimer’s disease. J Neurol Neurosurg Psych 70:624–630

    Google Scholar 

  • Skold K, Svensson M, Nilsson A, Zhang X, Nydahl K, Caprioli RM, Svenningsson P, Andren PE (2006) Decreased striatal levels of PEP-19 following MPTP lesion in the mouse. J Proteome Res 5:262–269

    PubMed  Google Scholar 

  • Spillantini MG, Schmidt ML, Lee VM-Y, Trojanowski JQ, Jakes R, Goedert M (1997) Alpha-synuclein in Lewy bodies. Nature 388:839–840

    PubMed  CAS  Google Scholar 

  • Spiro RG, Zhu Q, Bhoyroo V, Soling HD (1996) Definition of the lectin-like properties of the molecular chaperone, calreticulin, and demonstration of its copurification with endomannosidase from rat liver Golgi. J Biol Chem 271:11588–11594

    PubMed  CAS  Google Scholar 

  • Stühler K, Joppich C, Stephan C, Jung K, Müller M, Schmidt O, van Hall A, Hamacher M, Urfen W, Meyer HE, Marcus K (2006) Pilot study of the Human Proteome Organisation Brain Proteome Project: applying different 2-DE techniques to monitor proteomic changes during murine brain development. Proteomics 6:4899–4913

    PubMed  Google Scholar 

  • Sultana R, Boyd-Kimball D, Cai J, Pierce WM, Klein JB, Merchant M, Butterfield DA (2007) Proteomics analysis of the Alzheimer’s disease hippocampal proteome. J Alzheimers Dis 11:153–164

    PubMed  CAS  Google Scholar 

  • Svensson M, Skold K, Nilsson A, Falth M, Svenningsson P, Andren PE (2007) Neuropeptidomics: expanding proteomics downwards. Biochem Soc Trans 35:588–593

    PubMed  CAS  Google Scholar 

  • Swerdlow RH, Parks JK, Miller SW, Tuttle JB, Trimmer PA, Sheehan JP, Bennett JP Jr (1996) Origin and functional consequences of the complex I defect in Parkinson’s disease. Ann Neurol 40:663–671

    PubMed  CAS  Google Scholar 

  • Taira T, Saito Y, Niki T, Iguchi-Ariga SM, Takahashi K, Ariga H (2004) EMBO Rep 5:213–218

    PubMed  CAS  Google Scholar 

  • The deep-brain stimulation for Parkinson study group (2001) Deep-brain stimulation of the subthalamic nucleus or the pars interna of the globus pallidus in Parkinson’s disease. N Eng J Med 345:956–963

    Google Scholar 

  • Tinazzi M, Del Vesco C, Fincati E, Ottaviani S, Smania N, Moretto G, Fiaschi A, Martino D, Defazio G (2006) Pain and motor complications in Parkinson’s disease. J Neurol Neurosurg Psych 77:822–825

    CAS  Google Scholar 

  • Tribl F, Marcus K, Bringmann G, Meyer HE, Gerlach M, Riederer P (2006a) Proteomics of the human brain: sub-proteomes might hold the key to handle brain complexity. J Neural Transm 113:1041–1054

    PubMed  CAS  Google Scholar 

  • Tribl F, Marcus K, Meyer HE, Bringmann G, Gerlach M, Riederer P (2006b) Subcellular proteomics reveals neuromelanin granules to be a lysosome-related organelle. J Neural Transm 113:741–749

    PubMed  CAS  Google Scholar 

  • Trojanowski JQ, Lee VM (1998) Aggregation of neurofilament and alpha-synuclein proteins in Lewy bodies: implications for the pathogenesis of Parkinson disease and Lewy body dementia. Arch Neurol 55:151–152

    PubMed  CAS  Google Scholar 

  • Truong DD, Bhidayasiri R, Wolters E (2007) Management of non-motor symptoms in advanced Parkinson disease. J Neurol Sci 266:216–228

    PubMed  Google Scholar 

  • Tseng H-M, Su PC, Liu H-M, Liou H-H, Yen R-F (2007) Bilateral subthalamotomy for advanced Parkinson disease. Surg Neurol 68:S43–S50

    PubMed  Google Scholar 

  • Utal AK, Stopka AL, Roy M, Coleman PD (1998) PEP-19 immunohistochemistry defines the basal ganglia and associated structures in the adult human brain and is dramatically reduced in Huntington’s disease. Neuroscience 86:1055–1063

    PubMed  CAS  Google Scholar 

  • Utton MA, Connell J, Asuni AA, Van Slegtenhorst M, Hutton M, De Silva R, Lees AJ, Miller CC, Anderton BH (2002) The slow axonal transport of the microtubule-associated protein tau and the transport rates of different isoforms and mutants in cultured neurons. J Neurosci 22:6394–6400

    PubMed  CAS  Google Scholar 

  • Vercauteren FGG, Bergeron JJM, Vandesande F, Arckens L, Quirion R (2004) Proteomic approaches in brain research and neuropharmacology. Eur J Pharmacol 500:385–398

    PubMed  CAS  Google Scholar 

  • Vila-Carriles WH, Zhou ZH, Bubien JK, Fuller CM, Benos DJ (2007) Participation of the chaperone Hsc70 in the trafficking and functional expression of ASIC2 in glioma cells. J Biol Chem 282:34381–34391

    PubMed  CAS  Google Scholar 

  • von Bohlen und Halbach O, Schober A, Krieglstein K (2004) Genes, proteins, and neurotoxins involved in Parkinson’s disease. Prog Neurobiol 73:151–177

    Google Scholar 

  • Waragai M, Nakai M, Wei J, Fujita M, Mizuno H, Ho G, Masliah E, Akatsu H, Yokochi F, Hashimoto M (2007) Plasma levels of DJ-1 as a possible marker for progression of sporadic Parkinson’s disease. Neurosci Lett 425:18–22

    PubMed  CAS  Google Scholar 

  • Washburn MP, Yates JR (2000) Analysis of the microbial proteome. Curr Opin Microbiol 3:292–297

    PubMed  CAS  Google Scholar 

  • Washburn MP, Ulaszek R, Deciu C, Schieltz DM, Yates JR (2002) Analysis of quantitative proteomic data generated via multidimensional protein identification technology. Anal Chem 74:1650–1657

    PubMed  CAS  Google Scholar 

  • Wiederkehr F (1991) Analysis of cerebrospinal fluid proteins by electrophoresis. J Chromatogr 569:281–296

    PubMed  CAS  Google Scholar 

  • Wilkins MR, Sanchez JC, Gooley AA, Appel RD, Humphery-Smith I, Ochstrasser DF, Williams KL (1996) Progress with proteome projects: why all proteins expressed by a genome should be identified and how to do it. Biotechnol Genet Eng Rev 13:19–50

    PubMed  CAS  Google Scholar 

  • Wilkinson KD, Lee KM, Deshpande S, Duerksen-Hughes P, Boss JM, Pohl J (1989) The neuron-specific protein PGP9.5 is a ubiquitin carboxyl-terminal hydrolase. Science 246:670–673

    PubMed  CAS  Google Scholar 

  • Wolters EC, Francot C, Bergmans P, Winogrodzka A, Booij J, Berendse HW, Stoof HC (2000) Preclinical (premotor) Parkinson’s disease. J Neurol 247:II103–II109

    PubMed  Google Scholar 

  • Wolters DA, Washburn MP, Yates JR (2001) An automated multidimensional protein identification technology for shotgun proteomics. Anal Chem 73:5683–5690

    PubMed  CAS  Google Scholar 

  • Wood-Allum CA, Barber SC, Kirby J, Heath P, Holden H, Mead R, Higginbottom A, Allen S, Beaujeux T, Alexson SE, Ince PG, Shaw PJ (2006) Impairment of mitochondrial anti-oxidant defence in SOD1-related motor neuron injury and amelioration by ebselen. Brain 128:1686–1706

    Google Scholar 

  • Wu CC, MacCoss MJ (2002) Shotgun proteomics: tools for the analysis of complex biological systems. Curr Opin Mol Ther 4:242–250

    PubMed  CAS  Google Scholar 

  • Wu TL (2006) Two-dimensional difference gel electrophoresis. Methods Mol Biol 328:71–95

    PubMed  CAS  Google Scholar 

  • Xun Z, Sowell RA, Kaufman TC, Clemmer DE (2007) Lifetime proteomic profiling of an A30P α-synuclein drosophila model of Parkinson’s disease. J Proteome Res 6:3729–3738

    PubMed  CAS  Google Scholar 

  • Yao H, Sem DS (2005) Cofactor fingerprinting with STD NMR to characterize proteins of unknown function: identification of a rare cCMP cofactor preference. FEBS Lett 579:661–666

    PubMed  CAS  Google Scholar 

  • Yokota T, Sugawara K, Ito K, Takahashi R, Ariga H, Mizusawa H (2003) Down regulation of DJ-1 enhances cell death by oxidative stress, ER stress, and proteasome inhibition. Biochem Biophys Res Commun 312:1342–1348

    PubMed  CAS  Google Scholar 

  • Yoritaka A, Hattori N, Uchida K, Tanaka M, Stadtman E, Mizuno Y (1996) Immunohistochemical detection of 4-hydroxynonenal protein adducts in Parkinson’s disease. Proc Natl Acad Sci USA 93:2696–2701

    PubMed  CAS  Google Scholar 

  • Zang L, Toy DP, Hancock WS, Sgroi DC, Karger BL (2004) J Prot Res 3:604–612

    CAS  Google Scholar 

  • Zetterberg H, Ruetschi U, Portelius E, Brinkmalm G, Andreasson U, Blennow K, Brinkmalm A (2008) Clinical proteomics in neurodegenerative disorders. Acta Neurol Scand (in press)

  • Zigmond MJ, Burke RE (2002) Pathophysiology of Parkinson’s disease. In: Davis KL, Coyle J, Charney D, Nemeroff C (eds) Fifth Generation of Progress. Lippincott Williams & Wilkins, Philadelphia, pp 1781–1794

    Google Scholar 

  • Zhang B, Higuchi M, Yoshiyama Y, Ishihara T, Forman MS, Martinez D, Joyce S, Trojanowski JQ, Lee VM (2004) Retarded axonal transport of R406 W mutant tau in transgenic mice with a neurodegenerative tauopathy. J Neurosci 24:4657–4667

    PubMed  CAS  Google Scholar 

  • Zhou Y, Gu G, Goodlett DR, Zhang T, Pan C, Montine TJ, Montine KS, Aebersold RH, Zhang J (2004) Analysis of α-synuclein associated proteins by quantitative proteomics. J Biol Chem 279:39155–39164

    PubMed  CAS  Google Scholar 

  • Zhou W, Freed CR (2005) DJ-1 up-regulates glutathione synthesis during oxidative stress and inhibits A53T α-synuclein toxicity. J Biol Chem 280:43150–43158

    PubMed  CAS  Google Scholar 

  • Zhou W, Zhu M, Wilson MA, Petsko GA, Fink LA (2006) The oxidation state of DJ-1 regulates its chaperone activity toward alpha-synuclein. J Mol Biol 356:1036–1048

    PubMed  CAS  Google Scholar 

  • Zhu M, Qin ZJ, Hu D, Munishkina LA, Fink AL (2006) Alpha-synuclein can function as an antioxidant preventing oxidation of unsaturated lipid in vesicles. Biochemistry 45:8135–8142

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

IP is supported by an International Brian Research Organization (IBRO) Fellowship and wishes to thank IBRO for the generous financial support of her work. This work was also supported by an NIH Fogarty International Centre Research Grant (R21DA018087 to Michael Zigmond) and the Medical Research Council (MRC) of South Africa. The financial assistance of the National Research Foundation (NRF) of South Africa towards this work is also acknowledged. JG is a Medical Foundation Fellow. JG is supported by the University of Sydney, the National Health & Medical Research Council (NHMRC), the Australian Research Council (ARC), the New South Wales Government through the Ministry for Science and Medical Research (BioFirst Program), the Nerve Research Foundation, the Medical Foundation (University of Sydney) and the Judith Jane Mason & Harold Stannett Williams Memorial Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilse S. Pienaar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pienaar, I.S., Daniels, W.M.U. & Götz, J. Neuroproteomics as a promising tool in Parkinson’s disease research. J Neural Transm 115, 1413–1430 (2008). https://doi.org/10.1007/s00702-008-0070-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-008-0070-3

Keywords

Navigation