Skip to main content

Advertisement

Log in

Proximal trigeminal nerve atrophy is associated with favourable outcomes and persistent facial numbness following percutaneous balloon compression for primary trigeminal neuralgia

  • Original Article
  • Published:
Acta Neurochirurgica Aims and scope Submit manuscript

Abstract

Objective

Whether nerve atrophy can affect the prognosis of primary trigeminal neuralgia (PTN) patients undergoing percutaneous balloon compression (PBC) remains unclear. This study aimed to determine the association between nerve characteristics observed on preoperative magnetic resonance imaging (MRI) and PBC outcomes.

Methods

Between January 2019 and December 2022, a cohort of 58 patients with unilateral PTN treated with PBC were analysed retrospectively and included in this study. The relationship between MRI findings, including the proximal and distal nerve cross-sectional areas (CSAs), and favourable pain outcomes (BNI Grades I–III) was analysed through Kaplan‒Meier analysis.

Results

After a mean follow-up period of 23.8 ± 13.0 months (range, 6–50 months), 48 (82.8%) patients with PTN were pain free with or without medication. A smaller proximal CSA ratio (proximal CSA of the affected nerve/proximal CSA of the unaffected nerve) was significantly associated with favourable outcomes. The Kaplan–Meier survival analysis showed that patients with proximal nerve atrophy (proximal CSA ratio ≤ 87% after receiver operating characteristic curve analysis) had a higher estimated 4-year probability of maintaining a favourable outcome than those without nerve atrophy (94.4% vs. 30.8%, p = 0.005). In addition, patients with proximal nerve atrophy were more likely to suffer from postoperative persistent facial numbness.

Conclusions

Proximal nerve atrophy is correlated with both favourable outcomes and persistent facial numbness following PBC. Prospective studies are required to determine the optimal duration and pressure of balloon compression in relation to the proximal CSA ratio to achieve better pain outcomes and less facial numbness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets used or analysed during the current study are available from the corresponding author on reasonable request.

Code availability

Not applicable.

References

  1. Abdennebi B, Bouatta F, Chitti M, Bougatene B (1995) Percutaneous balloon compression of the Gasserian ganglion in trigeminal neuralgia. Long-term results in 150 cases. Acta Neurochir 136:72–74. https://doi.org/10.1007/bf01411438. (Wien)

    Article  CAS  PubMed  Google Scholar 

  2. Antonini G, Di Pasquale A, Cruccu G, Truini A, Morino S, Saltelli G, Romano A, Trasimeni G, Vanacore N, Bozzao A (2014) Magnetic resonance imaging contribution for diagnosing symptomatic neurovascular contact in classical trigeminal neuralgia: a blinded case-control study and meta-analysis. Pain 155:1464–1471. https://doi.org/10.1016/j.pain.2014.04.020

    Article  PubMed  Google Scholar 

  3. Asplund P, Blomstedt P, Bergenheim AT (2016) Percutaneous balloon compression vs percutaneous retrogasserian glycerol rhizotomy for the primary treatment of trigeminal neuralgia. Neurosurgery 78:421–428; discussion 428. https://doi.org/10.1227/NEU.0000000000001059

  4. Asplund P, Linderoth B, Bergenheim AT (2010) The predictive power of balloon shape and change of sensory functions on outcome of percutaneous balloon compression for trigeminal neuralgia. J Neurosurg 113:498–507. https://doi.org/10.3171/2010.2.JNS091466

    Article  PubMed  Google Scholar 

  5. Bendtsen L, Zakrzewska JM, Abbott J, Braschinsky M, Di Stefano G, Donnet A, Eide PK, Leal PRL, Maarbjerg S, May A, Nurmikko T, Obermann M, Jensen TS, Cruccu G (2019) European Academy of Neurology guideline on trigeminal neuralgia. Eur J Neurol 26:831–849. https://doi.org/10.1111/ene.13950

    Article  CAS  PubMed  Google Scholar 

  6. Brinzeu A, Drogba L, Sindou M (2018) Reliability of MRI for predicting characteristics of neurovascular conflicts in trigeminal neuralgia: implications for surgical decision making. J Neurosurg 1–11. https://doi.org/10.3171/2017.8.JNS171222

  7. Broggi G, Ferroli P, Franzini A (2008) Treatment strategy for trigeminal neuralgia: a thirty years experience. Neurol Sci 29(Suppl 1):S79-82. https://doi.org/10.1007/s10072-008-0893-6

    Article  PubMed  Google Scholar 

  8. Campos WK, Linhares MN (2011) A prospective study of 39 patients with trigeminal neuralgia treated with percutaneous balloon compression. Arq Neuropsiquiatr 69:221–226. https://doi.org/10.1590/s0004-282x2011000200016

    Article  PubMed  Google Scholar 

  9. Chaves JPG, de Oliveira TVHF, Francisco AN, Trintinalha MO, Carvalho NVP (2021) Trigeminal neuralgia recurrence: a comparison of microvascular decompression and percutaneous balloon compression: a five years follow-up study. Arq Neuropsiquiatr 79:51–55. https://doi.org/10.1590/0004-282X-anp-2020-0115

    Article  PubMed  Google Scholar 

  10. Cheng J, Meng J, Liu W, Zhang H, Hui X, Lei D (2017) Nerve atrophy in trigeminal neuralgia due to neurovascular compression and its association with surgical outcomes after microvascular decompression. Acta Neurochir 159:1699–1705. https://doi.org/10.1007/s00701-017-3250-9. (Wien)

    Article  PubMed  Google Scholar 

  11. Cheng JS, Lim DA, Chang EF, Barbaro NM (2014) A review of percutaneous treatments for trigeminal neuralgia. Neurosurgery 10 Suppl 1:25–33; discussion 33. https://doi.org/10.1227/neu.00000000000001687

  12. Cruccu G, Di Stefano G, Truini A (2020) Trigeminal neuralgia. N Engl J Med 383:754–762. https://doi.org/10.1056/NEJMra1914484

    Article  PubMed  Google Scholar 

  13. Cruccu G, Gronseth G, Alksne J, Argoff C, Brainin M, Burchiel K, Nurmikko T, Zakrzewska J (2008) AAN-EFNS guidelines on trigeminal neuralgia management. Eur J Neurol 15:1013–1028. https://doi.org/10.1111/j.1468-1331.2008.02185.x

    Article  CAS  PubMed  Google Scholar 

  14. Danyluk H, Lee EK, Wong S, Sajida S, Broad R, Wheatley M, Elliott C, Sankar T (2020) Hippocampal and trigeminal nerve volume predict outcome of surgical treatment for trigeminal neuralgia. Cephalalgia 40:586–596. https://doi.org/10.1177/0333102419877659

    Article  PubMed  Google Scholar 

  15. Devor M, Govrin-Lippmann R, Rappaport ZH (2002) Mechanism of trigeminal neuralgia: an ultrastructural analysis of trigeminal root specimens obtained during microvascular decompression surgery. J Neurosurg 96:532–543. https://doi.org/10.3171/jns.2002.96.3.0532

    Article  PubMed  Google Scholar 

  16. Duan Y, Sweet J, Munyon C, Miller J (2015) Degree of distal trigeminal nerve atrophy predicts outcome after microvascular decompression for Type 1a trigeminal neuralgia. J Neurosurg 123:1512–1518. https://doi.org/10.3171/2014.12.JNS142086

    Article  PubMed  Google Scholar 

  17. Eller JL, Raslan AM, Burchiel KJ (2005) Trigeminal neuralgia: definition and classification. Neurosurg Focus 18:E3. https://doi.org/10.3171/foc.2005.18.5.4

    Article  PubMed  Google Scholar 

  18. Erbay SH, Bhadelia RA, O’Callaghan M, Gupta P, Riesenburger R, Krackov W, Polak JF (2006) Nerve atrophy in severe trigeminal neuralgia: noninvasive confirmation at MR imaging–initial experience. Radiology 238:689–692. https://doi.org/10.1148/radiol.2382042214

    Article  PubMed  Google Scholar 

  19. Grewal SS, Kerezoudis P, Garcia O, Quinones-Hinojosa A, Reimer R, Wharen RE (2018) Results of percutaneous balloon compression in trigeminal pain syndromes. World Neurosurg 114:e892–e899. https://doi.org/10.1016/j.wneu.2018.03.111

    Article  PubMed  Google Scholar 

  20. Ha SM, Kim SH, Yoo EH, Han IB, Shin DA, Cho KG, Chung SS, Park YS (2012) Patients with idiopathic trigeminal neuralgia have a sharper-than-normal trigeminal-pontine angle and trigeminal nerve atrophy. Acta Neurochir 154:1627–1633. https://doi.org/10.1007/s00701-012-1327-z. (Wien)

    Article  PubMed  Google Scholar 

  21. Haines SJ, Jannetta PJ, Zorub DS (1980) Microvascular relations of the trigeminal nerve. An anatomical study with clinical correlation. J Neurosurg 52:381–386. https://doi.org/10.3171/jns.1980.52.3.0381

    Article  CAS  PubMed  Google Scholar 

  22. Hamlyn PJ, King TT (1992) Neurovascular compression in trigeminal neuralgia: a clinical and anatomical study. J Neurosurg 76:948–954. https://doi.org/10.3171/jns.1992.76.6.0948

    Article  CAS  PubMed  Google Scholar 

  23. Hilton DA, Love S, Gradidge T, Coakham HB (1994) Pathological findings associated with trigeminal neuralgia caused by vascular compression. Neurosurgery 35:299–303; discussion 303. https://doi.org/10.1227/00006123-199408000-00017

  24. Hu YS, Lee CC, Guo WY, Lin CJ, Yang HC, Wu HM, Liu KD, Chung WY (2019) Trigeminal nerve atrophy predicts pain recurrence after gamma knife stereotactic radiosurgery for classical trigeminal neuralgia. Neurosurgery 84:927–934. https://doi.org/10.1093/neuros/nyy122

    Article  PubMed  Google Scholar 

  25. Hughes MA, Frederickson AM, Branstetter BF, Zhu X, Sekula RF Jr (2016) MRI of the trigeminal nerve in patients with trigeminal neuralgia secondary to vascular compression. AJR Am J Roentgenol 206:595–600. https://doi.org/10.2214/AJR.14.14156

    Article  PubMed  Google Scholar 

  26. Hung YC, Lee CC, Liu KD, Chung WY, Pan DH, Yang HC (2014) Radiosurgery target location and individual anatomical variation in trigeminal nerves. J Neurosurg 121(Suppl):203–209. https://doi.org/10.3171/2014.7.Gks141432

    Article  PubMed  Google Scholar 

  27. Kourilsky A, Palpacuer C, Rogers A, Chauvet D, Wiart C, Bourdillon P, Le Guerinel C (2022) Multivariate models to predict pain recurrence and sensitive complications after percutaneous balloon compression in trigeminal neuralgia. J Neurosurg 1–10. https://doi.org/10.3171/2022.2.JNS212644

  28. Kouzounias K, Schechtmann G, Lind G, Winter J, Linderoth B (2010) Factors that influence outcome of percutaneous balloon compression in the treatment of trigeminal neuralgia. Neurosurgery 67:925–934; discussion 934. https://doi.org/10.1227/NEU.0b013e3181eb5230

  29. Kress B, Rasche D, Fiebach J, Tronnier V, Sartor K, Stippich C (2004) MR volumetry of the trigeminal nerve in patients with unilateral facial pain. Rofo 176:719–723. https://doi.org/10.1055/s-2004-812786

    Article  CAS  PubMed  Google Scholar 

  30. Kress B, Schindler M, Rasche D, Hahnel S, Tronnier V, Sartor K, Stippich C (2005) MRI volumetry for the preoperative diagnosis of trigeminal neuralgia. Eur Radiol 15:1344–1348. https://doi.org/10.1007/s00330-005-2674-4

    Article  PubMed  Google Scholar 

  31. Leal PR, Barbier C, Hermier M, Souza MA, Cristino-Filho G, Sindou M (2014) Atrophic changes in the trigeminal nerves of patients with trigeminal neuralgia due to neurovascular compression and their association with the severity of compression and clinical outcomes. J Neurosurg 120:1484–1495. https://doi.org/10.3171/2014.2.JNS131288

    Article  PubMed  Google Scholar 

  32. Leal PR, Hermier M, Souza MA, Cristino-Filho G, Froment JC, Sindou M (2011) Visualization of vascular compression of the trigeminal nerve with high-resolution 3T MRI: a prospective study comparing preoperative imaging analysis to surgical findings in 40 consecutive patients who underwent microvascular decompression for trigeminal neuralgia. Neurosurgery 69:15–25; discussion 26. https://doi.org/10.1227/NEU.0b013e318212bafa

  33. Lee C, Choi JG, Son BC (2023) Increase in trigeminal nerve cross-sectional area on immediate postoperative MRI predicts favorable outcome after microvascular decompression for classical trigeminal neuralgia. Neurosurgery 92:283–292. https://doi.org/10.1227/neu.0000000000002190

    Article  PubMed  Google Scholar 

  34. Lepski G, Mesquita Filho PM, Ramina K, Bisdas S, Ernemann U, Tatagiba M, Morgalla M, Feigl G (2015) MRI-based radiation-free method for navigated percutaneous radiofrequency trigeminal rhizotomy. J Neurol Surg A Cent Eur Neurosurg 76:160–167. https://doi.org/10.1055/s-0034-1394190

    Article  PubMed  Google Scholar 

  35. Li MW, Jiang XF, Niu CS (2021) Efficacy of and risk factors for percutaneous balloon compression for trigeminal neuralgia in elderly patients. Br J Neurosurg 35:280–284. https://doi.org/10.1080/02688697.2020.1787341

    Article  PubMed  Google Scholar 

  36. Li X, Zheng S, Cao Z, He L, Yang L, Ni J (2021) Factors associated with long-term risk of recurrence after percutaneous radiofrequency thermocoagulation of the Gasserian ganglion for patients with trigeminal neuralgia involving the ophthalmic division: a retrospective study. Pain Pract 21:26–36. https://doi.org/10.1111/papr.12930

    Article  PubMed  Google Scholar 

  37. Liu M, Tang S, Li T, Xu Z, Li S, Zhou Y, Li L, Wang W, Shi J, Shi W (2022) Prognostic nomogram for percutaneous balloon compression in the treatment of trigeminal neuralgia. Neurosurg Rev 45:561–569. https://doi.org/10.1007/s10143-021-01514-4

    Article  CAS  PubMed  Google Scholar 

  38. Maarbjerg S, Wolfram F, Gozalov A, Olesen J, Bendtsen L (2015) Significance of neurovascular contact in classical trigeminal neuralgia. Brain 138:311–319. https://doi.org/10.1093/brain/awu349

    Article  PubMed  Google Scholar 

  39. Majoie CB, Hulsmans FJ, Verbeeten B Jr, Castelijns JA, van Beek EJ, Valk J, Bosch DA (1997) Trigeminal neuralgia: comparison of two MR imaging techniques in the demonstration of neurovascular contact. Radiology 204:455–460. https://doi.org/10.1148/radiology.204.2.9240535

    Article  CAS  PubMed  Google Scholar 

  40. Miller JP, Acar F, Hamilton BE, Burchiel KJ (2009) Radiographic evaluation of trigeminal neurovascular compression in patients with and without trigeminal neuralgia. J Neurosurg 110:627–632. https://doi.org/10.3171/2008.6.17620

    Article  PubMed  Google Scholar 

  41. Montano N, Gaudino S, Giordano C, Pignotti F, Ioannoni E, Rapisarda A, Olivi A (2019) Possible prognostic role of magnetic resonance imaging findings in patients with trigeminal neuralgia and multiple sclerosis who underwent percutaneous balloon compression: report of our series and literature review. World Neurosurg 125:e575–e581. https://doi.org/10.1016/j.wneu.2019.01.134

    Article  PubMed  Google Scholar 

  42. Montano N, Papacci F, Cioni B, Di Bonaventura R, Meglio M (2012) Percutaneous balloon compression for the treatment of trigeminal neuralgia in patients with multiple sclerosis. Analysis of the potentially prognostic factors. Acta Neurochir 154:779–783. https://doi.org/10.1007/s00701-012-1301-9. (Wien)

    Article  PubMed  Google Scholar 

  43. Mullan S, Lichtor T (1983) Percutaneous microcompression of the trigeminal ganglion for trigeminal neuralgia. J Neurosurg 59:1007–1012. https://doi.org/10.3171/jns.1983.59.6.1007

    Article  CAS  PubMed  Google Scholar 

  44. Noorani I, Lodge A, Durnford A, Vajramani G, Sparrow O (2021) Comparison of first-time microvascular decompression with percutaneous surgery for trigeminal neuralgia: long-term outcomes and prognostic factors. Acta Neurochir 163:1623–1634. https://doi.org/10.1007/s00701-021-04793-4. (Wien)

    Article  PubMed  Google Scholar 

  45. Northcutt BG, Seeburg DP, Shin J, Aygun N, Herzka DA, Theodros D, Goodwin CR, Bettegowda C, Lim M, Blitz AM (2016) High-resolution MRI findings following trigeminal rhizotomy. AJNR Am J Neuroradiol 37:1920–1924. https://doi.org/10.3174/ajnr.A4868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Olesen J (2018) Headache Classification Committee of the International Headache Society (IHS) The International Classification of Headache Disorders, 3rd edition. Cephalalgia 38:1–211. https://doi.org/10.1177/0333102417738202

  47. Parise M, Acioly MA, Ribeiro CT, Vincent M, Gasparetto EL (2013) The role of the cerebellopontine angle cistern area and trigeminal nerve length in the pathogenesis of trigeminal neuralgia: a prospective case-control study. Acta Neurochir 155:863–868. https://doi.org/10.1007/s00701-012-1573-0. (Wien)

    Article  PubMed  Google Scholar 

  48. Peker S, Kurtkaya O, Uzün I, Pamir MN (2006) Microanatomy of the central myelin-peripheral myelin transition zone of the trigeminal nerve. Neurosurgery 59:354–359; discussion 354–359. https://doi.org/10.1227/01.Neu.0000223501.27220.69

  49. Rogers CL, Shetter AG, Fiedler JA, Smith KA, Han PP, Speiser BL (2000) Gamma knife radiosurgery for trigeminal neuralgia: the initial experience of The Barrow Neurological Institute. Int J Radiat Oncol Biol Phys 47:1013–1019. https://doi.org/10.1016/s0360-3016(00)00513-7

    Article  CAS  PubMed  Google Scholar 

  50. Seeburg DP, Northcutt B, Aygun N, Blitz AM (2016) The role of imaging for trigeminal neuralgia: a segmental approach to high-resolution MRI. Neurosurg Clin N Am 27:315–326. https://doi.org/10.1016/j.nec.2016.02.004

    Article  PubMed  Google Scholar 

  51. Skirving DJ, Dan NG (2001) A 20-year review of percutaneous balloon compression of the trigeminal ganglion. J Neurosurg 94:913–917. https://doi.org/10.3171/jns.2001.94.6.0913

    Article  CAS  PubMed  Google Scholar 

  52. Tanrikulu L, Scholz T, Nikoubashman O, Wiesmann M, Clusmann H (2015) Preoperative MRI in neurovascular compression syndromes and its role for microsurgical considerations. Clin Neurol Neurosurg 129:17–20. https://doi.org/10.1016/j.clineuro.2014.11.005

    Article  PubMed  Google Scholar 

  53. Unal TC, Unal OF, Barlas O, Hepgul K, Ali A, Aydoseli A, Aras Y, Sabanci PA, Sencer A, Izgi N (2017) Factors determining the outcome in trigeminal neuralgia treated with percutaneous balloon compression. World Neurosurg 107:69–74. https://doi.org/10.1016/j.wneu.2017.07.132

    Article  PubMed  Google Scholar 

  54. Wang DD, Raygor KP, Cage TA, Ward MM, Westcott S, Barbaro NM, Chang EF (2018) Prospective comparison of long-term pain relief rates after first-time microvascular decompression and stereotactic radiosurgery for trigeminal neuralgia. J Neurosurg 128:68–77. https://doi.org/10.3171/2016.9.JNS16149

    Article  PubMed  Google Scholar 

  55. Wang JY, Bender MT, Bettegowda C (2016) Percutaneous procedures for the treatment of trigeminal neuralgia. Neurosurg Clin 27:277–295

    Article  Google Scholar 

  56. Wang Q, Chen C, Guo G, Li Z, Huang D, Zhou H (2021) A prospective study to examine the association of the foramen ovale size with intraluminal pressure of pear-shaped balloon in percutaneous balloon compression for trigeminal neuralgia. Pain Ther 10:1439–1450. https://doi.org/10.1007/s40122-021-00311-7

    Article  PubMed  PubMed Central  Google Scholar 

  57. Zhao Y, Chen J, Jiang R, Xu X, Lin L, Xue Y, Duan Q (2022) MRI features of responsible contacts in vascular compressive trigeminal neuralgia and prediction modeling. Acta Radiol 63:100–109. https://doi.org/10.1177/0284185120983971

    Article  PubMed  Google Scholar 

  58. Zhao Z, Chai S, Wang J, Jiang X, Nie C, Zhao H (2021) Comparison of microvascular decompression and two isocenters gamma knife for the treatment of trigeminal neuralgia caused by vertebrobasilar dolichoectasia. Front Neurol 12:707985. https://doi.org/10.3389/fneur.2021.707985

    Article  PubMed  PubMed Central  Google Scholar 

  59. Ziyal IM, Ozgen T (2007) Microanatomy of the central myelin-peripheral myelin transition zone of the trigeminal nerve. Neurosurgery 60:E582; author reply E582. https://doi.org/10.1227/01.Neu.0000255367.19228.C4

Download references

Author information

Authors and Affiliations

Authors

Contributions

SL: conceptualisation, investigation data curation, and writing—original draft preparation; CL: writing—reviewing and editing; GC: software, validation, and methodology; YW: software, validation, and methodology; and WZ: supervision.

Corresponding author

Correspondence to Wenchuan Zhang.

Ethics declarations

Ethics approval

This study was in accordance with the ethical standards of the Institutional Review Board of our hospital and with the tenets of the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Comments

The authors of this article analyzed the size of the trigeminal nerve root in a series of patients with trigeminal neuralgia (TN) and discovered a higher likelihood of successful pain relief with percutaneous balloon compression in those who exhibited asymmetry between the affected and unaffected sides.

It remains unclear if the observed correlation has anything to do with the underlying mechanism of pain or the specific way the balloon compression produces long-lasting pain relief in TN patients. It is conceivable that nerve asymmetry is the reason TN patients develop pain in the first place, but the asymmetry may also be a result of prolonged nerve malfunction in TN patients when the nerve atrophies due to vascular compression or subsequent focal demyelination.

I applaud the authors for their thorough analysis of their clinical series but feel that it would be too early to make any recommendations in terms of choice of treatment approach or its technical details based on preoperative nerve morphometry.

Konstantin Slavin

Chicago, USA

Shuo Li and Chenlong Liao share the first authorship.

Yiwei Wu and Wenchuan Zhang share the last authorship.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Liao, C., Cheng, G. et al. Proximal trigeminal nerve atrophy is associated with favourable outcomes and persistent facial numbness following percutaneous balloon compression for primary trigeminal neuralgia. Acta Neurochir 165, 3867–3876 (2023). https://doi.org/10.1007/s00701-023-05849-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00701-023-05849-3

Keywords

Navigation