Skip to main content

Advertisement

Log in

Rapidly progressive cerebral atrophy following a posterior cranial fossa stroke: Assessment with semiautomatic CT volumetry

  • Original Article
  • Published:
Acta Neurochirurgica Aims and scope

Abstract

Background

The effect of posterior cranial fossa stroke on changes in cerebral volume is not known. We assessed cerebral volume changes in patients with acute posterior fossa stroke using CT scans, and looked for risk factors for cerebral atrophy.

Methods

Patients with cerebellar or brainstem hemorrhage/infarction admitted to the ICU, and who underwent at least two subsequent inpatient head CT scans during hospitalization were included (n = 60). The cerebral volume was estimated using an automatic segmentation method. Patients with cerebral volume reduction > 0% from the first to the last scan were defined as the “cerebral atrophy group (n = 47),” and those with ≤ 0% were defined as the “no cerebral atrophy group (n = 13).”

Results

The cerebral atrophy group showed a significant decrease in cerebral volume (first CT scan: 0.974 ± 0.109 L vs. last CT scan: 0.927 ± 0.104 L, P < 0.001). The mean percentage change in cerebral volume between CT scans in the cerebral atrophy group was –4.7%, equivalent to a cerebral volume of 46.8 cm3, over a median of 17 days. The proportions of cases with a history of hypertension, diabetes mellitus, and median time on mechanical ventilation were significantly higher in the cerebral atrophy group than in the no cerebral atrophy group.

Conclusions

Many ICU patients with posterior cranial fossa stroke showed signs of cerebral atrophy. Those with rapidly progressive cerebral atrophy were more likely to have a history of hypertension or diabetes mellitus and required prolonged ventilation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author, RN, upon reasonable request.

Abbreviations

CSF:

Cerebrospinal fluid

DM:

Diabetes mellitus

GCS:

Glasgow Coma Scale

GM:

Gray matter

ICU:

Intensive care unit

IQR:

Interquartile range

MNI:

Montreal Neurological Institute

mRS:

Modified Rankin Scale

PEEP:

Positive end-expiratory pressure

SPECT:

Single-photon emission computed tomography

SPM:

Statistical parametric mapping

WM:

White matter

References

  1. Adduru V, Baum SA, Zhang C, Helguera M, Zand R, Lichtenstein M, Griessenauer CJ, Michael AM (2020) A method to estimate brain volume from head CT images and application to detect brain atrophy in Alzheimer disease. AJNR Am J Neuroradiol 41:224–230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Andersen SM, Rapcsak SZ, Beeson PM (2010) Cost function masking during normalization of brains with focal lesions: still a necessity? Neuroimage 53:78–84

    Article  PubMed  Google Scholar 

  3. Ashburner J, Friston KJ (2005) Unified segmentation. Neuroimage 26:839–851

    Article  PubMed  Google Scholar 

  4. Bae HJ, Lee J, Park JM, Kwon O, Koo JS, Kim BK, Pandey DK (2007) Risk factors of intracranial cerebral atherosclerosis among asymptomatics. Cerebrovasc Dis 24:355–360

    Article  PubMed  Google Scholar 

  5. Baron JC, Bousser MG, Comar D, Castaigne P (1981) “Crossed cerebellar diaschisis” in human supratentorial brain infarction. Trans Am Neurol Assoc 105:459–461

    CAS  PubMed  Google Scholar 

  6. Brett M, Leff AP, Rorden C, Ashburner J (2001) Spatial normalization of brain images with focal lesions using cost function masking. Neuroimage 14:486–500

    Article  CAS  PubMed  Google Scholar 

  7. Chen H, Menon DK, Kavanagh BP (2019) Impact of altered airway pressure on intracranial pressure, perfusion, and oxygenation: a narrative review. Crit Care Med 47:254–263

    Article  PubMed  Google Scholar 

  8. Committee for Stroke Guideline 2009, the Japan Stroke Society (2009) Japan Stroke Society Guideline 2009 for the Treatment of Stroke. Kyowa-Kikaku Ltd, Tokyo (in Japanese)

  9. Committee for Stroke Guideline 2015, the Japan Stroke Society (2015) Japan Stroke Society Guideline 2015 for the Treatment of Stroke. Kyowa-Kikaku Ltd, Tokyo (in Japanese)

  10. Craig BT, Olsen C, Mah S, Carlson HL, Wei XC, Kirton A (2019) Crossed cerebellar atrophy in perinatal stroke. Stroke. https://doi.org/10.1161/STROKEAHA118022423

    Article  PubMed  Google Scholar 

  11. Evered L, Silbert B, Scott DA, Zetterberg H, Blennow K (2018) Association of changes in plasma neurofilament light and tau levels with anesthesia and surgery: results from the CAPACITY and ARCADIAN Studies. JAMA Neurol 75:542–547

    Article  PubMed  PubMed Central  Google Scholar 

  12. Fazekas F, Payer F, Valetitsch H, Schmidt R, Flooh E (1993) Brain stem infarction and diaschisis. a spect cerebral perfusion study. Stroke 24:1162–1166

    Article  CAS  PubMed  Google Scholar 

  13. Georgiadis D, Schwarz S, Baumgartner RW, Veltkamp R, Schwab S (2001) Influence of positive end-expiratory pressure on intracranial pressure and cerebral perfusion pressure in patients with acute stroke. Stroke 32:2088–2092

    Article  CAS  PubMed  Google Scholar 

  14. Giorgio A, De Stefano N (2013) Clinical use of brain volumetry. J Magn Reson Imaging 37:1–14

    Article  PubMed  Google Scholar 

  15. Hammers A, Allom R, Koepp MJ, Free SL, Myers R, Lemieux L, Mitchell TN, Brooks DJ, Duncan JS (2003) Three-dimensional maximum probability atlas of the human brain, with particular reference to the temporal lobe. Hum Brain Mapp 19:224–247

    Article  PubMed  PubMed Central  Google Scholar 

  16. Hocker S, Nagarajan E, Rabinstein AA, Hanson D, Britton JW (2016) Progressive brain atrophy in super-refractory status epilepticus. JAMA Neurol 73:1201–1207

    Article  PubMed  Google Scholar 

  17. Hoffmann M, Watts A (1998) Cognitive dysfunction in isolated brainstem stroke: a neuropsychological and SPECT study. J Stroke Cerebrovasc Dis 7:24–31

    Article  CAS  PubMed  Google Scholar 

  18. Horstmann A, Frisch S, Jentzsch RT, Muller K, Villringer A, Schroeter ML (2010) Resuscitating the heart but losing the brain: brain atrophy in the aftermath of cardiac arrest. Neurology 74:306–312

    Article  CAS  PubMed  Google Scholar 

  19. Huang HW, Guo MH, Lin RJ, Chen YL, Luo Q, Zhang Y, Wong KS (2007) Prevalence and risk factors of middle cerebral artery stenosis in asymptomatic residents in Rongqi County, Guangdong. Cerebrovasc Dis 24:111–115

    Article  PubMed  Google Scholar 

  20. Irimia A, Maher AS, Rostowsky KA, Chowdhury NF, Hwang DH, Law EM (2019) Brain segmentation from computed tomography of healthy aging and geriatric concussion at variable spatial resolutions. Front Neuroinform 13:9

    Article  PubMed  PubMed Central  Google Scholar 

  21. Knaus WA, Draper EA, Wagner DP, Zimmerman JE (1985) APACHE II: a severity of disease classification system. Crit Care Med 13:818–829

    Article  CAS  PubMed  Google Scholar 

  22. Lahiri S, Regis GC, Koronyo Y, Fuchs DT, Sheyn J, Kim EH, Mastali M, Van Eyk JE, Rajput PS, Lyden PD, Black KL, Ely EW, Jones HD, Koronyo-Hamaoui M (2019) Acute neuropathological consequences of short-term mechanical ventilation in wild-type and Alzheimer’s disease mice. Crit Care 23:63

    Article  PubMed  PubMed Central  Google Scholar 

  23. Marchi NA, Ramponi C, Hirotsu C, Haba-Rubio J, Lutti A, Preisig M, Marques-Vidal P, Vollenweider P, Kherif F, Heinzer R, Draganski B (2020) Mean oxygen saturation during sleep is related to specific brain atrophy pattern. Ann Neurol 87:921–930

    Article  CAS  PubMed  Google Scholar 

  24. Miyamoto S, Ogasawara K, Kuroda S, Itabashi R, Toyoda K, Itoh Y, Iguchi Y, Shiokawa Y, Takagi Y, Ohtsuki T, Kinouchi H, Okada Y, Takahashi JC, Nakase H, Kakuda W (2022) Japan Stroke Society Guideline 2021 for the Treatment of Stroke. Int J Stroke 17:1039–1049

    Article  PubMed  PubMed Central  Google Scholar 

  25. Nakae R, Sekine T, Tagami T, Murai Y, Kodani E, Warnock G, Sato H, Morita A, Yokota H, Yokobori S (2021) Rapidly progressive brain atrophy in septic ICU patients: a retrospective descriptive study using semiautomatic CT volumetry. Crit Care 25:411

    Article  PubMed  PubMed Central  Google Scholar 

  26. Nyquist P, Stevens RD, Mirski MA (2008) Neurologic injury and mechanical ventilation. Neurocrit Care 9:400–408

    Article  PubMed  Google Scholar 

  27. Paulson OB, Strandgaard S, Edvinsson L (1990) Cerebral autoregulation. Cerebrovasc Brain Metab Rev 2:161–192

    CAS  PubMed  Google Scholar 

  28. Prassopoulos P, Cavouras D, Golfinopoulos S, Evlogias N, Theodoropoulos V, Panagiotou J (1996) Quantitative assessment of cerebral atrophy during and after treatment in children with acute lymphoblastic leukemia. Invest Radiol 31:749–754

    Article  CAS  PubMed  Google Scholar 

  29. Qureshi AI, Caplan LR (2014) Intracranial atherosclerosis. Lancet 383:984–998

    Article  PubMed  Google Scholar 

  30. Rorden C, Bonilha L, Fridriksson J, Bender B, Karnath HO (2012) Age-specific CT and MRI templates for spatial normalization. Neuroimage 61:957–965

    Article  PubMed  Google Scholar 

  31. Rousseaux M, Steinling M (1992) Crossed hemispheric diaschisis in unilateral cerebellar lesions. Stroke 23:511–514

    Article  CAS  PubMed  Google Scholar 

  32. Rousseaux M, Steinling M, Mazingue A, Benaim C, Froger J (1995) Cerebral blood flow in lateral medullary infarcts. Stroke 26:1404–1408

    Article  CAS  PubMed  Google Scholar 

  33. Sasannejad C, Ely EW, Lahiri S (2019) Long-term cognitive impairment after acute respiratory distress syndrome: a review of clinical impact and pathophysiological mechanisms. Crit Care 23:352

    Article  PubMed  PubMed Central  Google Scholar 

  34. Steiner T, Mendoza G, De Georgia M, Schellinger P, Holle R, Hacke W (1997) Prognosis of stroke patients requiring mechanical ventilation in a neurological critical care unit. Stroke 28:711–715

    Article  CAS  PubMed  Google Scholar 

  35. Strandgaard S (1991) Cerebral blood flow in the elderly: impact of hypertension and antihypertensive treatment. Cardiovasc Drugs Ther 4(Suppl 6):1217–1221

    Article  PubMed  Google Scholar 

  36. Tien RD, Ashdown BC (1992) Crossed cerebellar diaschisis and crossed cerebellar atrophy: correlation of MR findings, clinical symptoms, and supratentorial diseases in 26 patients. AJR Am J Roentgenol 158:1155–1159

    Article  CAS  PubMed  Google Scholar 

  37. Tsuda Y, Ayada Y, Izumi Y, Ichihara S, Hosomi N, Ohkawa M, Matsuo H (1995) Cerebellar diaschisis in pontine infarctions: a report of five cases. Eur J Nucl Med 22:413–418

    Article  CAS  PubMed  Google Scholar 

  38. Uehara T, Tabuchi M, Mori E (2005) Risk factors for occlusive lesions of intracranial arteries in stroke-free Japanese. Eur J Neurol 12:218–222

    Article  CAS  PubMed  Google Scholar 

  39. Vincent JL, Moreno R, Takala J, Willatts S, De Mendonca A, Bruining H, Reinhart CK, Suter PM, Thijs LG (1996) The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure. On behalf of the Working Group on Sepsis-Related Problems of the European Society of Intensive Care Medicine. Intensive Care Med 22:707–710

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Libby Cone, MD, MA, from Dmed (www.dmed.co.jp) for editing drafts of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Conception and design: YM, RN. Acquisition of data: YM, TS, EK. Analysis and interpretation of data: YM, RN, YI, TT, YM. Drafting the article: YM, RN, TS. Reviewed submitted version of manuscript: all authors. Approved the final version of the manuscript on behalf of all authors: RN. Statistical analysis: YM, RN. Study supervision: GW, KS, SY.

Corresponding author

Correspondence to Ryuta Nakae.

Ethics declarations

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the Ethics Committee of Nippon Medical School Hospital and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. The Institutional Review Board of Nippon Medical School Hospital approved this study (B-2022–552) and waived the need for informed consent due to the observational nature of the study.

Conflict of interest

One author (Geoffrey Warnock) is an employee of PMOD Technologies Ltd. Only PMOD non-employees had control of inclusion of data and other information.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matsumoto, Y., Nakae, R., Sekine, T. et al. Rapidly progressive cerebral atrophy following a posterior cranial fossa stroke: Assessment with semiautomatic CT volumetry. Acta Neurochir 165, 1575–1584 (2023). https://doi.org/10.1007/s00701-023-05609-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00701-023-05609-3

Keywords

Navigation