Skip to main content

Advertisement

Log in

The intra-tumoral heterogeneity in glioblastoma — a limitation for prognostic value of epigenetic markers?

  • Original Article
  • Published:
Acta Neurochirurgica Aims and scope Submit manuscript

Abstract

Objective

Epigenetic tumor features are getting into focus as prognostic markers in glioblastoma. Whether intra-tumoral heterogeneity in these epigenetic characteristics may influence prognostic value remains unclear.

Methods

Of 154 patients suffering from glioblastoma, 120 patients served as reference collective, while 34 patients were compiled as test collective. MGMT, p15, and p16 promoter methylation and miRNA expression levels (miRNA-21, miRNA-24, miRNA-26a, and miRNA-181d) were measured in each tumor specimen. Serving as a statistical baseline, epigenetic heterogeneity between tumors (inter-tumoral) was estimated within a triplet of three tumor specimens from three different reference patients. For estimation of epigenetic heterogeneity within a tumor (intra-tumoral), previous results were compared to three tumor specimens within one glioblastoma of patients of the test collective. Resulting levels of heterogeneity were then correlated with survival and validated by an external TCGA data set.

Results

Heterogeneity in MGMT promoter methylation occurred less likely in the test group compared to the reference group. No difference in heterogeneity was observed between test and reference group regarding p15 and p16 methylation. Intra-tumoral heterogeneity within the test group regarding miRNA-21, miRNA-24, miRNA-26a, and miRNA-181d expression was not distinguishable from inter-tumoral heterogeneity. A homogenously increased miRNA-21 expression was associated with reduced overall survival in the test collective. The findings could be validated by comparison with TCGA datasets.

Conclusion

Heterogeneity of epigenetic characteristics in one glioblastoma may be of the same magnitude as heterogeneity between different patients. Not only the extent of epigenetic characteristics but also the extent of intra-tumoral heterogeneity may influence survival in glioblastoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets used and analyzed during the current study are available from the corresponding author on reasonable request.

Abbreviations

FC:

Fold change

GBM:

Glioblastoma multiforme

IDH:

Isocitrate dehydrogenase

MGMT:

O6-Methylguanine-DNA methyltransferase

miRNA:

microRNA

MS-PCR:

Methylation-specific polymerase chain reaction

qRT-PCR:

Quantitative reverse-transcription polymerase chain reaction

TCGA:

The Cancer Genome Atlas

References

  1. Anaya J (2016) OncoLnc: linking TCGA survival data to mRNAs, miRNAs, and lncRNAs. PeerJ Comput Sci 2:e67

    Article  Google Scholar 

  2. Areeb Z, Stylli SS, Koldej R, Ritchie DS, Siegal T, Morokoff AP, Kaye AH, Luwor RB (2015) MicroRNA as potential biomarkers in glioblastoma. J Neuro-Oncol 125(2):237–248

    Article  CAS  Google Scholar 

  3. Banelli B, Forlani A, Allemanni G, Morabito A, Pistillo MP, Romani M (2017) MicroRNA in glioblastoma: an overview. Int J Genomics 2017:7639084

    Article  PubMed  PubMed Central  Google Scholar 

  4. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297

    Article  CAS  PubMed  Google Scholar 

  5. Chen Y-Y, Ho H-L, Lin S-C, Ho TD-H, Hsu C-Y (2018) Upregulation of miR-125b, miR-181d, and miR-221 predicts poor prognosis in MGMT promoter-unmethylated glioblastoma patients. Am J Clin Pathol 149(5):412–417

    Article  CAS  PubMed  Google Scholar 

  6. Die Krankhaften Geschwülste von Virchow, Rudolph: (1863) Jeremy Norman’s historyofscience. https://www.abebooks.de/erstausgabe/krankhaften-Geschw%C3%BClste-Virchow-Rudolph-Hirschwald-Berlin/4782669611/bd. Accessed 31 Jan 2021

  7. Gates EDH, Weinberg JS, Prabhu SS, Lin JS, Hamilton J, Hazle JD, Fuller GN, Baladandayuthapani V, Fuentes DT, Schellingerhout D (2021) Estimating local cellular density in glioma using MR imaging data. AJNR Am J Neuroradiol 42(1):102–108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Giglio S, Cirombella R, Amodeo R, Portaro L, Lavra L, Vecchione A (2013) MicroRNA miR-24 promotes cell proliferation by targeting the CDKs inhibitors p27Kip1 and p16INK4a. J Cell Physiol 228(10):2015–2023

    Article  CAS  PubMed  Google Scholar 

  9. Gittleman H, Boscia A, Ostrom QT, Truitt G, Fritz Y, Kruchko C, Barnholtz-Sloan JS (2018) Survivorship in adults with malignant brain and other central nervous system tumor from 2000-2014. Neuro-Oncol 20(suppl_7):vii6–vii16

    Article  PubMed  PubMed Central  Google Scholar 

  10. Guo P, Lan J, Ge J, Nie Q, Guo L, Qiu Y, Mao Q (2014) MiR-26a enhances the radiosensitivity of glioblastoma multiforme cells through targeting of ataxia-telangiectasia mutated. Exp Cell Res 320(2):200–208

    Article  CAS  PubMed  Google Scholar 

  11. Hamilton MG, Roldán G, Magliocco A, McIntyre JB, Parney I, Easaw JC (2011) Determination of the methylation status of MGMT in different regions within glioblastoma multiforme. J Neuro-Oncol 102(2):255–260

    Article  CAS  Google Scholar 

  12. Håvik AB, Brandal P, Honne H et al (2012) MGMT promoter methylation in gliomas-assessment by pyrosequencing and quantitative methylation-specific PCR. J Transl Med 10:36

    Article  PubMed  PubMed Central  Google Scholar 

  13. Hegi ME, Diserens A-C, Gorlia T et al (2005) MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med 352(10):997–1003

    Article  CAS  PubMed  Google Scholar 

  14. Hegi ME, Liu L, Herman JG, Stupp R, Wick W, Weller M, Mehta MP, Gilbert MR (2008) Correlation of O6-methylguanine methyltransferase (MGMT) promoter methylation with clinical outcomes in glioblastoma and clinical strategies to modulate MGMT activity. J Clin Oncol Off J Am Soc Clin Oncol 26(25):4189–4199

    Article  CAS  Google Scholar 

  15. Heydari AA, Sindi SS (2022) Deep learning in spatial transcriptomics: learning from the next next-generation sequencing. https://doi.org/10.1101/2022.02.28.482392

    Book  Google Scholar 

  16. (1926) A classification of the tumors of the glioma group on a histogenetic basis with a correlated study of prognosis. JAMA J Am Med Assoc 87(4):268

  17. Khwaja SS, Cai C, Badiyan SN, Wang X, Huang J (2018) The immune-related microRNA miR-146b is upregulated in glioblastoma recurrence. Oncotarget 9(49):29036–29046

    Article  PubMed  PubMed Central  Google Scholar 

  18. Klughammer J, Kiesel B, Roetzer T et al (2018) The DNA methylation landscape of glioblastoma disease progression shows extensive heterogeneity in time and space. Nat Med 24(10):1611–1624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Labib EM, Ezz El Arab LR, Ghanem HM, Hassan RE, Swellam M (2020) Relevance of circulating MiRNA-21 and MiRNA-181 in prediction of glioblastoma multiforme prognosis. Arch Physiol. Biochem 1–6

  20. Lakomy R, Sana J, Hankeova S et al (2011) MiR-195, miR-196b, miR-181c, miR-21 expression levels and O-6-methylguanine-DNA methyltransferase methylation status are associated with clinical outcome in glioblastoma patients. Cancer Sci 102(12):2186–2190

    Article  CAS  PubMed  Google Scholar 

  21. Lal A, Kim HH, Abdelmohsen K et al (2008) p16(INK4a) translation suppressed by miR-24. PLoS One 3(3):e1864

    Article  PubMed  PubMed Central  Google Scholar 

  22. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) method. Methods San Diego Calif 25(4):402–408

    Article  CAS  PubMed  Google Scholar 

  23. Loeper S, Romeike BF, Heckmann N, Jung V, Henn W, Feiden W, Zang KD, Urbschat S (2001) Frequent mitotic errors in tumor cells of genetically micro-heterogeneous glioblastomas. Cytogenet Cell Genet 94(1–2):1–8

    Article  CAS  PubMed  Google Scholar 

  24. Maachani UB, Tandle A, Shankavaram U, Kramp T, Camphausen K (2016) Modulation of miR-21 signaling by MPS1 in human glioblastoma. Oncotarget 7(33):52912–52927

    Article  PubMed  Google Scholar 

  25. Masoudi MS, Mehrabian E, Mirzaei H (2018) MiR-21: a key player in glioblastoma pathogenesis. J Cell Biochem 119(2):1285–1290

    Article  CAS  PubMed  Google Scholar 

  26. Mikkelsen VE, Solheim O, Salvesen Ø, Torp SH (2021) The histological representativeness of glioblastoma tissue samples. Acta Neurochir 163(7):1911–1920

    Article  PubMed  Google Scholar 

  27. Nakajima N, Nobusawa S, Nakata S et al (2018) BRAF V600E, TERT promoter mutations and CDKN2A/B homozygous deletions are frequent in epithelioid glioblastomas: a histological and molecular analysis focusing on intratumoral heterogeneity. Brain Pathol Zurich Switz 28(5):663–673

    Article  CAS  Google Scholar 

  28. Ostrom QT, Gittleman H, Farah P, Ondracek A, Chen Y, Wolinsky Y, Stroup NE, Kruchko C, Barnholtz-Sloan JS (2013) CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2006-2010. Neuro-Oncol 15(Suppl 2):ii1–i56

    Article  PubMed  PubMed Central  Google Scholar 

  29. Parker NR, Hudson AL, Khong P et al (2016) Intratumoral heterogeneity identified at the epigenetic, genetic and transcriptional level in glioblastoma. Sci Rep 6(1):22477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Parsons DW, Jones S, Zhang X et al (2008) An integrated genomic analysis of human glioblastoma multiforme. Science 321(5897):1807–1812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Patel AP, Tirosh I, Trombetta JJ et al (2014) Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science 344(6190):1396–1401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29(9):45–445

    Article  Google Scholar 

  33. Pfaffl MW (2002) Relative expression software tool (REST(C)) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res 30(9):36–336

    Article  Google Scholar 

  34. Philipot D, Guérit D, Platano D et al (2014) p16INK4a and its regulator miR-24 link senescence and chondrocyte terminal differentiation-associated matrix remodeling in osteoarthritis. Arthritis Res Ther 16(1):R58

    Article  PubMed  PubMed Central  Google Scholar 

  35. Sareen H, Ma Y, Becker TM, Roberts TL, de Souza P, Powter B (2022) Molecular biomarkers in glioblastoma: a systematic review and meta-analysis. Int J Mol Sci 23(16):8835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Schmidt E, Ichimura K, Messerle K, Goike H, Collins V (1997) Infrequent methylation of CDKN2A(MTS1/p16) and rare mutation of both CDKN2A and CDKN2B(MTS2/p15) in primary astrocytic tumours. Br J Cancer 75(1):2–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sippl C, Ketter R, Bohr L, Kim YJ, List M, Oertel J, Urbschat S (2019) MiRNA-181d expression significantly affects treatment responses to carmustine wafer implantation. Neurosurgery 85(1):147–155

    Article  PubMed  Google Scholar 

  38. Sippl C, Ketter R, Braun L et al (2019) miRNA-26a expression influences the therapy response to carmustine wafer implantation in patients with glioblastoma multiforme. Acta Neurochir 161(11):2299–2309

    Article  PubMed  Google Scholar 

  39. Sippl C, Urbschat S, Kim YJ, Senger S, Oertel J, Ketter R (2018) Promoter methylation of RB1, P15, P16, and MGMT and their impact on the clinical course of pilocytic astrocytomas. Oncol Lett 15(2):1600–1606

    PubMed  Google Scholar 

  40. Sufianov A, Begliarzade S, Ilyasova T, Xu X, Beylerli O (2022) MicroRNAs as potential diagnostic markers of glial brain tumors. Non-Coding RNA Res 7(4):242–247

    Article  CAS  Google Scholar 

  41. Uhlmann K, Rohde K, Zeller C, Szymas J, Vogel S, Marczinek K, Thiel G, Nürnberg P, Laird PW (2003) Distinct methylation profiles of glioma subtypes: methylation profiles in gliomas. Int J Cancer 106(1):52–59

    Article  CAS  PubMed  Google Scholar 

  42. Wemmert S, Bettscheider M, Alt S, Ketter R, Kammers K, Feiden W, Steudel W-I, Rahnenführer J, Urbschat S (2009) p15 promoter methylation - a novel prognostic marker in glioblastoma patients. Int J Oncol 34(6):1743–1748

    CAS  PubMed  Google Scholar 

  43. Wenger A, Ferreyra Vega S, Kling T, Bontell TO, Jakola AS, Carén H (2019) Intratumor DNA methylation heterogeneity in glioblastoma: implications for DNA methylation-based classification. Neuro-Oncol 21(5):616–627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Williams CG, Lee HJ, Asatsuma T, Vento-Tormo R, Haque A (2022) An introduction to spatial transcriptomics for biomedical research. Genome Med 14(1):68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Xiuju C, Zhen W, Yanchao S (2016) SOX7 inhibits tumor progression of glioblastoma and is regulated by miRNA-24. Open Med Wars Pol 11(1):133–137

    Article  Google Scholar 

  46. Yerukala Sathipati S, Huang H-L, Ho S-Y (2016) Estimating survival time of patients with glioblastoma multiforme and characterization of the identified microRNA signatures. BMC Genomics 17(Suppl 13):1022

    Article  PubMed  PubMed Central  Google Scholar 

  47. Zhang W, Zhang J, Hoadley K et al (2012) miR-181d: a predictive glioblastoma biomarker that downregulates MGMT expression. Neuro-Oncol 14(6):712–719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zhang Y, Cruickshanks N, Pahuski M, Yuan F, Dutta A, Schiff D, Purow B, Abounader R (2017) Noncoding RNAs in glioblastoma. Glioblastoma

    Book  Google Scholar 

  49. Zhang Y-F, Zhang A-R, Zhang B-C, Rao Z-G, Gao J-F, Lv M-H, Wu Y-Y, Wang S-M, Wang R-Q, Fang D-C (2013) MiR-26a regulates cell cycle and anoikis of human esophageal adenocarcinoma cells through Rb1-E2F1 signaling pathway. Mol Biol Rep 40(2):1711–1720

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sippl Christoph.

Ethics declarations

Ethics approval and consent to participate

This study was approved by the local German ethical board (Ethikkommission der Ärztekammer des Saarlandes, Saarbrücken, Germany). All procedures performed in this study were in accordance with the ethical standards of the 1964 Helsinki Declaration, and informed consent was obtained from all participants. This article does not contain any animal studies performed by any of the authors.

Consent for publication

Written informed consent was obtained from all patients (General Medical Council of the State of Saarland, NO 93/16).

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Christoph, S., Alicia, S., Fritz, T. et al. The intra-tumoral heterogeneity in glioblastoma — a limitation for prognostic value of epigenetic markers?. Acta Neurochir 165, 1635–1644 (2023). https://doi.org/10.1007/s00701-023-05594-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00701-023-05594-7

Keywords

Navigation