Skip to main content

Advertisement

Log in

Petrous bone lesions: surgical implementation and outcomes of extradural subtemporal approach

  • Original Article - Brain Tumors
  • Published:
Acta Neurochirurgica Aims and scope Submit manuscript

Abstract

Background

Petrous bone lesions (PBLs) are rare with few reports in the neurosurgical literature. In this study, the authors describe our current technique of extradural subtemporal approach (ESTA). The objective of this study was to evaluate the role and efficacy of ESTA for treatment of the PBLs. To our knowledge, this is the largest reported clinical series of using an ESTA-treated PBLs in which the clinical outcomes were evaluated.

Methods

Between 1994 and 2019, 67 patients with PBLs treated by ESTA were retrospectively reviewed. Extent of resection, neurological outcomes, recurrence rate, and surgical complications were evaluated and compared with previous studies. The indications, advantages, limitations, and outcomes of ESTA were analyzed according to pathology.

Results

This series included 7 facial nerve schwannomas (10.4%), 16 cholesterol granulomas (23.9%), 16 chordomas (23.9%), 6 chondrosarcomas (9%), 5 trigeminal schwannomas (7.5%), 9 epidermoids/dermoids (13.4%), and 8 other pathologies (11.9%). The most common location of PBLs operated with ESTA was at the petrous apex and rhomboid areas (68.7%). Gross total resection was achieved in 35 (55.6%). Symptomatic improvement occurred in 56 patients (83.6%). Complications occurred in 7 (10.4%) of cases including one mortality. Nine patients (17%) had recurrence within the mean follow-up 71 months. Compared to previous literature, our results demonstrated comparable outcomes but with higher rates of hearing and facial nerve preservation as well as minimal morbidity. From our results, ESTA is an effective therapeutic option for lesions located at the rhomboid and petrous apex, particularly when patients presented with intact facial and hearing function.

Conclusion

Our series demonstrated that ESTA provided satisfactory outcomes with excellent benefits of hearing and facial function preservation for patients with petrous bone lesions. ESTA should be considered as a safe and effective therapeutic option for selected patients with PBLs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

AE:

Arcuate eminence

C6:

Petrous carotid artery

CN:

Cranial nerve

Co:

Cochlear

CPA:

Cerebellopontine angle

CSF:

Cerebrospinal fluid

ECA:

External carotid artery

EOR:

Extent of resection

ESTA:

Extradural subtemporal approach

FN:

Facial nerve

FNS:

Facial nerve schwannoma

GE:

Geniculate ganglion

GG:

Gasserian ganglion

GSPN:

Greater superficial petrosal nerve

GTR:

Gross total resection

HB Gr:

House–Brackmann grading

In:

Incus

IAC:

Internal auditory canal

ICA:

Internal carotid artery

ITFA:

Infratemporal fossa approach

LSC:

Lateral semicircular canal

Ma:

Malleolus

M2:

M2 segment of the middle cerebral artery

MMA:

Middle meningeal artery

NTR:

Near total resection

PAM:

Petrous apex meningocele

PBE:

Petrous bone epidermoid

PB:

Petrous bone

PBL:

Petrous bone lesion

PSC:

Posterior semicircular canal

PTA:

Pure tone audiometry

PTR:

Partial tumor resection

SDS:

Speech discrimination scores

SSC:

Superior semicircular canal

STA:

Superficial temporal artery

STR:

Subtotal tumor resection

SV:

Superior vestibular nerve

TgF:

Trigeminal fibrous ring

TS:

Trigeminal schwannoma

TTM:

Tensor tympani muscle

V2:

The maxillary division of trigeminal nerve

V3:

The mandibular division of trigeminal nerve

References

  1. Al-Mefty O, Ayoubi S, Gaber E (2002) Trigeminal schwannomas: removal of dumbbell-shaped tumors through the expanded Meckel cave and outcomes of cranial nerve function. J Neurosurg 96:453–463. https://doi.org/10.3171/jns.2002.96.3.0453

    Article  PubMed  Google Scholar 

  2. Ammirati M, Delgado M, Slone HW, Ray-Chaudhury A (2007) Extradural dermoid tumor of the petrous apex. Case report. J Neurosurg 107:426–429. https://doi.org/10.3171/JNS-07/08/0426

    Article  PubMed  Google Scholar 

  3. Boari N, Gagliardi F, Cavalli A, Gemma M, Ferrari L, Riva P, Mortini P (2016) Skull base chordomas: clinical outcome in a consecutive series of 45 patients with long-term follow-up and evaluation of clinical and biological prognostic factors. J Neurosurg 125:450–460. https://doi.org/10.3171/2015.6.JNS142370

    Article  PubMed  Google Scholar 

  4. Brackmann DE, Toh EH (2002) Surgical management of petrous apex cholesterol granulomas. Otol Neurotol 23:529–533. https://doi.org/10.1097/00129492-200207000-00023

    Article  PubMed  Google Scholar 

  5. Carlson ML, Deep NL, Patel NS, Lundy LB, Tombers NM, Lohse CM, Link MJ, Driscoll CL (2016) Facial nerve schwannomas: review of 80 cases over 25 years at Mayo Clinic. Mayo Clin Proc 91:1563–1576. https://doi.org/10.1016/j.mayocp.2016.07.007

    Article  PubMed  Google Scholar 

  6. Castillo MP, Samy RN, Isaacson B, Roland PS (2008) Petrous apex cholesterol granuloma aeration: does it matter? Otolaryngol Head Neck Surg 138:518–522. https://doi.org/10.1016/j.otohns.2007.12.012

    Article  PubMed  Google Scholar 

  7. Colli BO, Al-Mefty O (2001) Chordomas of the skull base: follow-up review and prognostic factors. Neurosurg Focus 10:E1. https://doi.org/10.3171/foc.2001.10.3.2

    Article  CAS  PubMed  Google Scholar 

  8. Danesi G, Cooper T, Panciera DT, Manni V, Cote DW (2016) Sanna classification and prognosis of cholesteatoma of the petrous part of the temporal bone: a retrospective series of 81 patients. Otol Neurotol 37:787–792. https://doi.org/10.1097/MAO.0000000000000953

    Article  PubMed  Google Scholar 

  9. Day JD, Fukushima T, Giannotta SL (1994) Microanatomical study of the extradural middle fossa approach to the petroclival and posterior cavernous sinus region: description of the rhomboid construct. Neurosurgery 34:1009–1016; discussion 1016. https://doi.org/10.1227/00006123-199406000-00009

    Article  CAS  PubMed  Google Scholar 

  10. Day JD, Fukushima T, Giannotta SL (1996) Innovations in surgical approach: lateral cranial base approaches. Clin Neurosurg 43:72–90

    CAS  PubMed  Google Scholar 

  11. Di Maio S, Rostomily R, Sekhar LN (2012) Current surgical outcomes for cranial base chordomas: cohort study of 95 patients. Neurosurgery 70:1355–1360; discussion 1360. https://doi.org/10.1227/NEU.0b013e3182446783

    Article  PubMed  Google Scholar 

  12. Di Maio S, Temkin N, Ramanathan D, Sekhar LN (2011) Current comprehensive management of cranial base chordomas: 10-year meta-analysis of observational studies. J Neurosurg 115:1094–1105. https://doi.org/10.3171/2011.7.JNS11355

    Article  PubMed  Google Scholar 

  13. Eisenberg MB, Haddad G, Al-Mefty O (1997) Petrous apex cholesterol granulomas: evolution and management. J Neurosurg 86:822–829. https://doi.org/10.3171/jns.1997.86.5.0822

    Article  CAS  PubMed  Google Scholar 

  14. Eytan DF, Kshettry VR, Sindwani R, Woodard TD, Recinos PF (2014) Surgical outcomes after endoscopic management of cholesterol granulomas of the petrous apex: a systematic review. Neurosurg Focus 37:E14. https://doi.org/10.3171/2014.7.FOCUS14344

    Article  PubMed  Google Scholar 

  15. Friedman RA, Pensak ML, Tauber M, Tew JM Jr, van Loveren HR (1997) Anterior petrosectomy approach to infraclinoidal basilar artery aneurysms: the emerging role of the neuro-otologist in multidisciplinary management of basilar artery aneurysms. Laryngoscope 107:977–983. https://doi.org/10.1097/00005537-199707000-00027

    Article  CAS  PubMed  Google Scholar 

  16. Fukaya R, Yoshida K, Ohira T, Kawase T (2010) Trigeminal schwannomas: experience with 57 cases and a review of the literature. Neurosurg Rev 34:159–171. https://doi.org/10.1007/s10143-010-0289-y

    Article  PubMed  Google Scholar 

  17. Fukushima T, Nonaka Y (2010) Fukushima manual of skull base dissection. AF-Neuro Video, Raleigh, NC

  18. Gardner PA, Tormenti MJ, Pant H, Fernandez-Miranda JC, Snyderman CH, Horowitz MB (2013) Carotid artery injury during endoscopic endonasal skull base surgery: incidence and outcomes. Neurosurgery 73:ons261-269; discussion ons269-270. https://doi.org/10.1227/01.neu.0000430821.71267.f2

    Article  PubMed  Google Scholar 

  19. Gjuric M, Wigand ME, Wolf SR (2001) Enlarged middle fossa vestibular schwannoma surgery: experience with 735 cases. Otol Neurotol 22:223–230; discussion 230-221. https://doi.org/10.1097/00129492-200103000-00019

    Article  CAS  PubMed  Google Scholar 

  20. Grinblat G, Vashishth A, Galetti F, Caruso A, Sanna M (2017) Petrous apex cholesterol granulomas: outcomes, complications, and hearing results from surgical and wait-and-scan management. Otol Neurotol 38:e476–e485. https://doi.org/10.1097/MAO.0000000000001578

    Article  PubMed  Google Scholar 

  21. Hasegawa H, Shin M, Kondo K, Hanakita S, Mukasa A, Kin T, Saito N (2018) Role of endoscopic transnasal surgery for skull base chondrosarcoma: a retrospective analysis of 19 cases at a single institution. J Neurosurg 128:1438–1447. https://doi.org/10.3171/2017.1.JNS162000

    Article  PubMed  Google Scholar 

  22. Hitselberger WE, Horn KL, Hankinson H, Brackmann DE, House WF (1993) The middle fossa transpetrous approach for petroclival meningiomas. Skull Base Surg 3:130–135. https://doi.org/10.1055/s-2008-1060575

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. House WF, Hitselberger WE, Horn KL (1986) The middle fossa transpetrous approach to the anterior-superior cerebellopontine angle. Am J Otol 7:1–4

    Article  CAS  PubMed  Google Scholar 

  24. Isaacson B (2015) Cholesterol granuloma and other petrous apex lesions. Otolaryngol Clin North Am 48:361–373. https://doi.org/10.1016/j.otc.2014.12.009

    Article  PubMed  Google Scholar 

  25. Isaacson B, Coker NJ, Vrabec JT, Yoshor D, Oghalai JS (2006) Invasive cerebrospinal fluid cysts and cephaloceles of the petrous apex. Otol Neurotol 27:1131–1141. https://doi.org/10.1097/01.mao.0000244353.26954.71

    Article  PubMed  Google Scholar 

  26. Kawase T, Shiobara R, Toya S (1994) Middle fossa transpetrosal-transtentorial approaches for petroclival meningiomas. Selective pyramid resection and radicality. Acta Neurochir (Wien) 129:113–120. https://doi.org/10.1007/BF01406489

    Article  CAS  Google Scholar 

  27. Kawase T, Toya S, Shiobara R, Mine T (1985) Transpetrosal approach for aneurysms of the lower basilar artery. J Neurosurg 63:857–861. https://doi.org/10.3171/jns.1985.63.6.0857

    Article  CAS  PubMed  Google Scholar 

  28. Kim YH, Jeon C, Se YB, Hong SD, Seol HJ, Lee JI, Park CK, Kim DG, Jung HW, Han DH, Nam DH, Kong DS (2018) Clinical outcomes of an endoscopic transclival and transpetrosal approach for primary skull base malignancies involving the clivus. J Neurosurg 128:1454–1462. https://doi.org/10.3171/2016.12.JNS161920

    Article  PubMed  Google Scholar 

  29. Koutourousiou M, Gardner PA, Tormenti MJ, Henry SL, Stefko ST, Kassam AB, Fernandez-Miranda JC, Snyderman CH (2012) Endoscopic endonasal approach for resection of cranial base chordomas: outcomes and learning curve. Neurosurgery 71:614–624; discussion 624-615. https://doi.org/10.1227/NEU.0b013e31825ea3e0

    Article  PubMed  Google Scholar 

  30. Kusumi M, Fukushima T, Mehta AI, Cunningham CD 3rd, Friedman AH, Fujii K (2013) Middle fossa approach for total resection of petrous apex cholesterol granulomas: use of vascularized galeofascial flap preventing recurrence. Neurosurgery 72:77–86; discussion 86. https://doi.org/10.1227/NEU.0b013e3182724354

    Article  PubMed  Google Scholar 

  31. Li Y, Liu H, Cheng Y (2014) Subtotal resection of facial nerve schwannoma is not safe in the long run. Acta Otolaryngol 134:433–436. https://doi.org/10.3109/00016489.2013.871746

    Article  PubMed  Google Scholar 

  32. Lipschitz N, Kohlberg GD, Zuccarello M, Samy RN (2018) Comprehensive review of the extended middle cranial fossa approach. Curr Opin Otolaryngol Head Neck Surg 26:286–292. https://doi.org/10.1097/MOO.0000000000000471

    Article  PubMed  Google Scholar 

  33. Liu XD, Xu QW, Che XM, Yang DL (2009) Trigeminal neurinomas: clinical features and surgical experience in 84 patients. Neurosurg Rev 32:435–444. https://doi.org/10.1007/s10143-009-0210-8

    Article  PubMed  Google Scholar 

  34. Magliulo G (2007) Petrous bone cholesteatoma: clinical longitudinal study. Eur Arch Otorhinolaryngol 264:115–120. https://doi.org/10.1007/s00405-006-0168-x

    Article  PubMed  Google Scholar 

  35. McMonagle B, Al-Sanosi A, Croxson G, Fagan P (2008) Facial schwannoma: results of a large case series and review. J Laryngol Otol 122:1139–1150. https://doi.org/10.1017/S0022215107000667

    Article  CAS  PubMed  Google Scholar 

  36. Nonaka Y, Fukushima T, Watanabe K, Sakai J, Friedman AH, Zomorodi AR (2016) Middle infratemporal fossa less invasive approach for radical resection of parapharyngeal tumors: surgical microanatomy and clinical application. Neurosurg Rev 39:87–96; discussion 96-87. https://doi.org/10.1007/s10143-015-0655-x

    Article  PubMed  Google Scholar 

  37. Omran A, De Denato G, Piccirillo E, Leone O, Sanna M (2006) Petrous bone cholesteatoma: management and outcomes. Laryngoscope 116:619–626. https://doi.org/10.1097/01.mlg.0000208367.03963.ca

    Article  PubMed  Google Scholar 

  38. Paluzzi A, Gardner P, Fernandez-Miranda JC, Pinheiro-Neto CD, Scopel TF, Koutourousiou M, Snyderman CH (2012) Endoscopic endonasal approach to cholesterol granulomas of the petrous apex: a series of 17 patients: clinical article. J Neurosurg 116:792–798. https://doi.org/10.3171/2011.11.JNS111077

    Article  PubMed  Google Scholar 

  39. Prasad SC, Balasubramanian K, Piccirillo E, Taibah A, Russo A, He J, Sanna M (2018) Surgical technique and results of cable graft interpositioning of the facial nerve in lateral skull base surgeries: experience with 213 consecutive cases. J Neurosurg 128:631–638. https://doi.org/10.3171/2016.9.JNS16997

    Article  PubMed  Google Scholar 

  40. Prasad SC, Laus M, Dandinarasaiah M, Piccirillo E, Russo A, Taibah A, Sanna M (2018) Surgical management of intrinsic tumors of the facial nerve. Neurosurgery 83:740–752. https://doi.org/10.1093/neuros/nyx489

    Article  PubMed  Google Scholar 

  41. Prasad SC, Piras G, Piccirillo E, Taibah A, Russo A, He J, Sanna M (2016) Surgical strategy and facial nerve outcomes in petrous bone cholesteatoma. Audiol Neurootol 21:275–285. https://doi.org/10.1159/000448584

    Article  PubMed  Google Scholar 

  42. Rennert RC, Hoshide R, Calayag M, Kemp J, Gonda DD, Meltzer HS, Fukushima T, Day JD, Levy ML (2018) Extended middle fossa approach to lateralized pontine cavernomas in children. J Neurosurg Pediatr 21:384–388. https://doi.org/10.3171/2017.10.PEDS17381

    Article  PubMed  Google Scholar 

  43. Sen C, Triana AI, Berglind N, Godbold J, Shrivastava RK (2010) Clival chordomas: clinical management, results, and complications in 71 patients. J Neurosurg 113:1059–1071. https://doi.org/10.3171/2009.9.JNS08596

    Article  PubMed  Google Scholar 

  44. Senn P, Haeusler R, Panosetti E, Caversaccio M (2011) Petrous bone cholesteatoma removal with hearing preservation. Otol Neurotol 32:236–241. https://doi.org/10.1097/MAO.0b013e3182001ef4

    Article  PubMed  Google Scholar 

  45. Slater PW, Welling DB, Goodman JH, Miner ME (1998) Middle fossa transpetrosal approach for petroclival and brainstem tumors. Laryngoscope 108:1408–1412. https://doi.org/10.1097/00005537-199809000-00030

    Article  CAS  PubMed  Google Scholar 

  46. Stevens SM, Manning A, Pensak ML, Samy RN (2017) Long-term symptom-specific outcomes for patients with petrous apex cholesterol granulomas: surgery versus observation. Otol Neurotol 38:253–259. https://doi.org/10.1097/MAO.0000000000001268

    Article  PubMed  Google Scholar 

  47. Van Gompel JJ, Alikhani P, Youssef AS, Loveren HR, Boyev KP, Agazzi S (2015) Anterior petrosectomy: consecutive series of 46 patients with attention to approach-related complications. J Neurol Surg B Skull Base 76:379–384. https://doi.org/10.1055/s-0034-1543971

    Article  PubMed Central  PubMed  Google Scholar 

  48. Vaz-Guimaraes F, Fernandez-Miranda JC, Koutourousiou M, Hamilton RL, Wang EW, Snyderman CH, Gardner PA (2017) Endoscopic endonasal surgery for cranial base chondrosarcomas. Oper Neurosurg (Hagerstown) 13:421–434. https://doi.org/10.1093/ons/opx020

    Article  Google Scholar 

  49. Wang EW, Zanation AM, Gardner PA, Schwartz TH, Eloy JA, Adappa ND, Bettag M, Bleier BS, Cappabianca P, Carrau RL, Casiano RR, Cavallo LM, Ebert CS Jr, El-Sayed IH, Evans JJ, Fernandez-Miranda JC, Folbe AJ, Froelich S, Gentili F, Harvey RJ, Hwang PH, Jane JA Jr, Kelly DF, Kennedy D, Knosp E, Lal D, Lee JYK, Liu JK, Lund VJ, Palmer JN, Prevedello DM, Schlosser RJ, Sindwani R, Solares CA, Tabaee A, Teo C, Thirumala PD, Thorp BD, de Arnaldo Silva Vellutini E, Witterick I, Woodworth BA, Wormald PJ, Snyderman CH (2019) ICAR: endoscopic skull-base surgery. Int Forum Allergy Rhinol 9:S145–S365. https://doi.org/10.1002/alr.22326

    Article  PubMed  Google Scholar 

  50. Wang L, Wu Z, Tian K, Wang K, Li D, Ma J, Jia G, Zhang L, Zhang J (2017) Clinical features and surgical outcomes of patients with skull base chordoma: a retrospective analysis of 238 patients. J Neurosurg 127:1257–1267. https://doi.org/10.3171/2016.9.JNS16559

    Article  PubMed  Google Scholar 

  51. Wanibuchi M, Fukushima T, Zomordi AR, Nonaka Y, Friedman AH (2012) Trigeminal schwannomas: skull base approaches and operative results in 105 patients. Neurosurgery 70:132–143; discussion 143-134. https://doi.org/10.1227/NEU.0b013e31822efb21

    Article  PubMed  Google Scholar 

  52. Yoshida K, Kawase T (1999) Trigeminal neurinomas extending into multiple fossae: surgical methods and review of the literature. J Neurosurg 91:202–211. https://doi.org/10.3171/jns.1999.91.2.0202

    Article  CAS  PubMed  Google Scholar 

  53. Zanation AM, Snyderman CH, Carrau RL, Gardner PA, Prevedello DM, Kassam AB (2009) Endoscopic endonasal surgery for petrous apex lesions. Laryngoscope 119:19–25. https://doi.org/10.1002/lary.20027

    Article  PubMed  Google Scholar 

  54. Zanoletti E, Mazzoni A, Martini A, Abbritti RV, Albertini R, Alexandre E, Baro V, Bartolini S, Bernardeschi D, Bivona R, Bonali M, Borghesi I, Borsetto D, Bovo R, Breun M, Calbucci F, Carlson ML, Caruso A, Caye-Thomasen P, Cazzador D, Champagne PO, Colangeli R, Conte G, D’Avella D, Danesi G, Deantonio L, Denaro L, Di Berardino F, Draghi R, Ebner FH, Favaretto N, Ferri G, Fioravanti A, Froelich S, Giannuzzi A, Girasoli L, Grossardt BR, Guidi M, Hagen R, Hanakita S, Hardy DG, Iglesias VC, Jefferies S, Jia H, Kalamarides M, Kanaan IN, Krengli M, Landi A, Lauda L, Lepera D, Lieber S, Lloyd SLK, Lovato A, Maccarrone F, Macfarlane R, Magnan J, Magnoni L, Marchioni D, Marinelli JP, Marioni G, Mastronardi V, Matthies C, Moffat DA, Munari S, Nardone M, Pareschi R, Pavone C, Piccirillo E, Piras G, Presutti L, Restivo G, Reznitsky M, Roca E, Russo A, Sanna M, Sartori L, Scheich M, Shehata-Dieler W, Soloperto D, Sorrentino F, Sterkers O, Taibah A, Tatagiba M, Tealdo G, Vlad D, Wu H, Zanetti D (2019) Surgery of the lateral skull base: a 50-year endeavour. Acta Otorhinolaryngol Ital 39:S1–S146. https://doi.org/10.14639/0392-100X-suppl.1-39-2019

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Zoli M, Milanese L, Bonfatti R, Faustini-Fustini M, Marucci G, Tallini G, Zenesini C, Sturiale C, Frank G, Pasquini E, Mazzatenta D (2018) Clival chordomas: considerations after 16 years of endoscopic endonasal surgery. J Neurosurg 128:329–338. https://doi.org/10.3171/2016.11.JNS162082

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

For patient follow-up data, we express our gratitude to Drs. Tsutomu Masuda, Takuro Inoue, and Hiromi Goto. In addition, we would like to express our gratitude to Lori Radcliffe and James Carter, PA-C, for data collection and editorial assistance.

Author information

Authors and Affiliations

Authors

Contributions

Conception and design: Udom, Fukushima. Acquisition of data: Udom, Fukushima. Analysis and interpretation of data: Udom. Drafting the article: Udom, Fukushima. Critically revising the article: Udom, Fukushima, Friedman, Zomorodi. Reviewed submitted version of manuscript: Udom, Fukushima, Friedman, Zomorodi. Approved the final version of the manuscript on behalf of all authors: Fukushima. Statistical analysis: Udom. Administrative/technical/material support: Udom. Study supervision: Fukushima.

Corresponding author

Correspondence to Udom Bawornvaraporn.

Ethics declarations

Ethical approval

All procedures performed in this study were in accordance with the ethical standards of Duke University Medical Center and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

For this retrospective type of study, individual formal consent is not required.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This manuscript has not been published or presented elsewhere in part or in entirely.

This article is part of the Topical Collection on Brain Tumors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bawornvaraporn, U., Zomorodi, A.R., Friedman, A.H. et al. Petrous bone lesions: surgical implementation and outcomes of extradural subtemporal approach. Acta Neurochir 163, 2881–2894 (2021). https://doi.org/10.1007/s00701-021-04962-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00701-021-04962-5

Keywords

Navigation