Skip to main content

Advertisement

Log in

Neurosurgical management of petrous bone lesions: classification system and selection of surgical approaches

  • Original Article - Brain Tumors
  • Published:
Acta Neurochirurgica Aims and scope Submit manuscript

Abstract

Background

Surgery of petrous bone lesions (PBLs) is challenging for neurosurgeons. Selection of the surgical approach is an important key for success. In this study, the authors present an anatomical classification for PBLs that has been used by our group for over the past 26 years. The objective of this study is to investigate the benefits and applicability of this classification.

Methods

Between 1994 and 2019, 117 patients treated for PBLs were retrospectively reviewed. Using the V3 and arcuate eminence as reference points, the petrous bone is segmented into 3 parts: petrous apex, rhomboid, and posterior. The pathological diagnoses, selection of the operative approach, and the extent of resection (EOR) were analyzed and correlated using this classification.

Results

This series included 22 facial nerve schwannomas (18.8%), 22 cholesterol granulomas (18.8%), 39 chordomas/chondrosarcomas (33.3%), 6 trigeminal schwannomas (5.1%), 13 epidermoids/dermoids (11.1%), and 15 other pathologies (12.8%). PBLs were most often involved with the petrous apex and rhomboid areas (46.2%). The extradural subtemporal approach (ESTA) was most frequently used (57.3%). Gross total resection was achieved in 58.4%. Symptomatic improvement occurred in 92 patients (78.6%). Our results demonstrated a correlation between this classification with each type of pathology (p < .001), selection of surgical approaches (p < 0.001), and EOR (p = 0.008). Chordoma/chondrosarcoma, redo operations, and lesions located medially were less likely to have total resection. Temporary complications occurred in 8 cases (6.8%), persistent morbidity in 5 cases (4.3%), and mortality in 1 case.

Conclusion

In this study, we proposed a simple classification of PBLs. Using landmarks on the superior petrosal surface, the petrous bone is divided into 3 parts, apex, rhomboid, and posterior. Our results demonstrated that chordoma/chondrosarcoma, redo operations, and lesions involving the tip of the petrous apex or far medial locations were more difficult to achieve total resection. This classification could help surgeons understand surgical anatomy framework, predict possible structures at risk, and select the most appropriate approach for each patient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

AE:

Arcuate eminence

C6:

Petrous carotid artery

CN:

Cranial nerve

CPA:

Cerebellopontine angle

CSF:

Cerebrospinal fluid

ECA:

External carotid artery

EOR:

Extent of resection

ESTA:

Extradural subtemporal approach

FNS:

Facial nerve schwannoma

GCT:

Giant cell tumor

GE:

Geniculate ganglion

GG:

Gasserian ganglion

GSPN:

Greater superficial petrosal nerve

GTR:

Gross total resection

HB Gr:

House-Brackmann grading

IAC:

Internal auditory canal

ICA:

Internal carotid artery

ITFA:

Infratemporal fossa approach

M2:

M2 segment of the middle cerebral artery

MMA:

Middle meningeal artery

NTR:

Near total resection

PB:

Petrous bone

PBE:

Petrous bone epidermoid

PBL:

Petrous bone lesion

PTR:

Partial tumor resection

SSC:

Superior semicircular canal

STA:

Superficial temporal artery

STR:

Subtotal tumor resection

V3:

The mandibular nerve (third division of fifth cranial nerve)

TgF:

Trigeminal fibrous ring

TMJ:

Temporomandibular joint

References

  1. Boari N, Gagliardi F, Cavalli A, Gemma M, Ferrari L, Riva P, Mortini P (2016) Skull base chordomas: clinical outcome in a consecutive series of 45 patients with long-term follow-up and evaluation of clinical and biological prognostic factors. J Neurosurg 125:450–460. https://doi.org/10.3171/2015.6.JNS142370

    Article  PubMed  Google Scholar 

  2. Carlson ML, Deep NL, Patel NS, Lundy LB, Tombers NM, Lohse CM, Link MJ, Driscoll CL (2016) Facial nerve schwannomas: review of 80 Cases Over 25 Years at Mayo Clinic. Mayo Clin Proc 91:1563–1576. https://doi.org/10.1016/j.mayocp.2016.07.007

    Article  PubMed  Google Scholar 

  3. Carlson ML, O’Connell BP, Breen JT, Wick CC, Driscoll CL, Haynes DS, Thompson RC, Isaacson B, Gidley PW, Kutz JW Jr, Van Gompel JJ, Wanna GB, Raza SM, DeMonte F, Barnett SL, Link MJ (2016) Petroclival chondrosarcoma: a multicenter review of 55 cases and new staging system. Otol Neurotol 37:940–950. https://doi.org/10.1097/MAO.0000000000001037

    Article  PubMed  Google Scholar 

  4. Carlson ML, Osetinsky LM, Alon EE, Inwards CY, Lane JI, Moore EJ (2017) Tenosynovial giant cell tumors of the temporomandibular joint and lateral skull base: Review of 11 cases. Laryngoscope 127:2340–2346. https://doi.org/10.1002/lary.26435

    Article  PubMed  Google Scholar 

  5. Danesi G, Cooper T, Panciera DT, Manni V, Cote DW (2016) Sanna classification and prognosis of cholesteatoma of the petrous part of the temporal bone: a retrospective series of 81 patients. Otol Neurotol 37:787–792. https://doi.org/10.1097/MAO.0000000000000953

    Article  PubMed  Google Scholar 

  6. Di Maio S, Rostomily R, Sekhar LN (2012) Current surgical outcomes for cranial base chordomas: cohort study of 95 patients. Neurosurgery 70:1355–1360. https://doi.org/10.1227/NEU.0b013e3182446783 (discussion 1360)

    Article  PubMed  Google Scholar 

  7. Di Maio S, Temkin N, Ramanathan D, Sekhar LN (2011) Current comprehensive management of cranial base chordomas: 10-year meta-analysis of observational studies. J Neurosurg 115:1094–1105. https://doi.org/10.3171/2011.7.JNS11355

    Article  PubMed  Google Scholar 

  8. Freeman JL, Sampath R, Quattlebaum SC, Casey MA, Folzenlogen ZA, Ramakrishnan VR, Youssef AS (2018) Expanding the endoscopic transpterygoid corridor to the petroclival region: anatomical study and volumetric comparative analysis. J Neurosurg 128:1855–1864. https://doi.org/10.3171/2017.1.JNS161788

    Article  PubMed  Google Scholar 

  9. Fukaya R, Yoshida K, Ohira T, Kawase T (2010) Trigeminal schwannomas: experience with 57 cases and a review of the literature. Neurosurg Rev 34:159–171. https://doi.org/10.1007/s10143-010-0289-y

    Article  PubMed  Google Scholar 

  10. Fukushima T, Nonaka Y (2010) Fukushima manual of skull base dissection. AF-Neuro Video, Raleigh

    Google Scholar 

  11. Grinblat G, Vashishth A, Galetti F, Caruso A, Sanna M (2017) Petrous apex cholesterol granulomas: outcomes, complications, and hearing results from surgical and wait-and-scan management. Otol Neurotol 38:e476–e485. https://doi.org/10.1097/MAO.0000000000001578

    Article  PubMed  Google Scholar 

  12. Hasegawa H, Shin M, Kondo K, Hanakita S, Mukasa A, Kin T, Saito N (2018) Role of endoscopic transnasal surgery for skull base chondrosarcoma: a retrospective analysis of 19 cases at a single institution. J Neurosurg 128:1438–1447. https://doi.org/10.3171/2017.1.JNS162000

    Article  PubMed  Google Scholar 

  13. Jefferson G (1953) The trigeminal neurinomas with some remarks on malignant invasion of the gasserian ganglion. Clin Neurosurg 1:11–54. https://doi.org/10.1093/neurosurgery/1.cn_suppl_1.11

    Article  CAS  PubMed  Google Scholar 

  14. Kim YH, Jeon C, Se YB, Hong SD, Seol HJ, Lee JI, Park CK, Kim DG, Jung HW, Han DH, Nam DH, Kong DS (2018) Clinical outcomes of an endoscopic transclival and transpetrosal approach for primary skull base malignancies involving the clivus. J Neurosurg 128:1454–1462. https://doi.org/10.3171/2016.12.JNS161920

    Article  PubMed  Google Scholar 

  15. Koutourousiou M, Gardner PA, Tormenti MJ, Henry SL, Stefko ST, Kassam AB, Fernandez-Miranda JC, Snyderman CH (2012) Endoscopic endonasal approach for resection of cranial base chordomas: outcomes and learning curve. Neurosurgery 71:614–624. https://doi.org/10.1227/NEU.0b013e31825ea3e0 (discussion 624-615)

    Article  PubMed  Google Scholar 

  16. Kusumi M, Fukushima T, Mehta AI, Cunningham CD 3rd, Friedman AH, Fujii K (2013) Middle fossa approach for total resection of petrous apex cholesterol granulomas: use of vascularized galeofascial flap preventing recurrence. Neurosurgery 72:77–86. https://doi.org/10.1227/NEU.0b013e3182724354 (discussion 86)

    Article  PubMed  Google Scholar 

  17. McMonagle B, Al-Sanosi A, Croxson G, Fagan P (2008) Facial schwannoma: results of a large case series and review. J Laryngol Otol 122:1139–1150. https://doi.org/10.1017/S0022215107000667

    Article  CAS  PubMed  Google Scholar 

  18. McRackan TR, Rivas A, Wanna GB, Yoo MJ, Bennett ML, Dietrich MS, Glasscock ME, Haynes DS (2012) Facial nerve outcomes in facial nerve schwannomas. Otol Neurotol 33:78–82. https://doi.org/10.1097/MAO.0b013e31823c8ef1

    Article  PubMed  Google Scholar 

  19. Muto J, Prevedello DM, Ditzel Filho LF, Tang IP, Oyama K, Kerr EE, Otto BA, Kawase T, Yoshida K, Carrau RL (2016) Comparative analysis of the anterior transpetrosal approach with the endoscopic endonasal approach to the petroclival region. J Neurosurg 125:1171–1186. https://doi.org/10.3171/2015.8.JNS15302

    Article  PubMed  Google Scholar 

  20. Paluzzi A, Gardner P, Fernandez-Miranda JC, Pinheiro-Neto CD, Scopel TF, Koutourousiou M, Snyderman CH (2012) Endoscopic endonasal approach to cholesterol granulomas of the petrous apex: a series of 17 patients: clinical article. J Neurosurg 116:792–798. https://doi.org/10.3171/2011.11.JNS111077

    Article  PubMed  Google Scholar 

  21. Parhizkar N, Hiltzik DH, Selesnick SH (2005) Facial nerve rerouting in skull base surgery. Otolaryngol Clin North Am 38(685–710):ix. https://doi.org/10.1016/j.otc.2005.01.003

    Article  Google Scholar 

  22. Prasad SC, Piccirillo E, Nuseir A, Sequino G, De Donato G, Paties CT, Sanna M (2014) Giant cell tumors of the skull base: case series and current concepts. Audiol Neurootol 19:12–21. https://doi.org/10.1159/000355701

    Article  PubMed  Google Scholar 

  23. Prasad SC, Piras G, Piccirillo E, Taibah A, Russo A, He J, Sanna M (2016) Surgical strategy and facial nerve outcomes in petrous bone cholesteatoma. Audiol Neurootol 21:275–285. https://doi.org/10.1159/000448584

    Article  PubMed  Google Scholar 

  24. Ramina R, Mattei TA, Soria MG, da Silva EB Jr, Leal AG, Neto MC, Fernandes YB (2008) Surgical management of trigeminal schwannomas. Neurosurg Focus 25:E6. https://doi.org/10.3171/FOC.2008.25.12.E6 (discussion E6)

    Article  PubMed  Google Scholar 

  25. Sanna M, Pandya Y, Mancini F, Sequino G, Piccirillo E (2011) Petrous bone cholesteatoma: classification, management and review of the literature. Audiol Neurootol 16:124–136. https://doi.org/10.1159/000315900

    Article  PubMed  Google Scholar 

  26. Sbaihat A, Bacciu A, Pasanisi E, Sanna M (2013) Skull base chondrosarcomas: surgical treatment and results. Ann Otol Rhinol Laryngol 122:763–770. https://doi.org/10.1177/000348941312201206

    Article  PubMed  Google Scholar 

  27. Selesnick SH, Abraham MT, Carew JF (1996) Rerouting of the intratemporal facial nerve: an analysis of the literature. Am J Otol 17:793–805 (discussion 806-799)

    CAS  PubMed  Google Scholar 

  28. Sen C, Triana AI, Berglind N, Godbold J, Shrivastava RK (2010) Clival chordomas: clinical management, results, and complications in 71 patients. J Neurosurg 113:1059–1071. https://doi.org/10.3171/2009.9.JNS08596

    Article  PubMed  Google Scholar 

  29. Sweeney AD, Osetinsky LM, Carlson ML, Valenzuela CV, Frisch CD, Netterville JL, Link MJ, Driscoll CL, Haynes DS (2015) The natural history and management of petrous apex cholesterol granulomas. Otol Neurotol 36:1714–1719. https://doi.org/10.1097/MAO.0000000000000862

    Article  PubMed  Google Scholar 

  30. Van Gompel JJ, Alikhani P, Tabor MH, van Loveren HR, Agazzi S, Froelich S, Youssef AS (2014) Anterior inferior petrosectomy: defining the role of endonasal endoscopic techniques for petrous apex approaches. J Neurosurg 120:1321–1325. https://doi.org/10.3171/2014.2.JNS131773

    Article  PubMed  Google Scholar 

  31. Vaz-Guimaraes F, Fernandez-Miranda JC, Koutourousiou M, Hamilton RL, Wang EW, Snyderman CH, Gardner PA (2017) Endoscopic endonasal surgery for cranial base chondrosarcomas. Oper Neurosurg (Hagerstown) 13:421–434. https://doi.org/10.1093/ons/opx020

    Article  Google Scholar 

  32. Wang EW, Zanation AM, Gardner PA, Schwartz TH, Eloy JA, Adappa ND, Bettag M, Bleier BS, Cappabianca P, Carrau RL, Casiano RR, Cavallo LM, Ebert CS Jr, El-Sayed IH, Evans JJ, Fernandez-Miranda JC, Folbe AJ, Froelich S, Gentili F, Harvey RJ, Hwang PH, Jane JA Jr, Kelly DF, Kennedy D, Knosp E, Lal D, Lee JYK, Liu JK, Lund VJ, Palmer JN, Prevedello DM, Schlosser RJ, Sindwani R, Solares CA, Tabaee A, Teo C, Thirumala PD, Thorp BD, de Arnaldo Silva Vellutini E, Witterick I, Woodworth BA, Wormald PJ, Snyderman CH, (2019) ICAR: endoscopic skull-base surgery. Int Forum Allergy Rhinol 9:S145–S365. https://doi.org/10.1002/alr.22326

    Article  PubMed  Google Scholar 

  33. Wang L, Wu Z, Tian K, Wang K, Li D, Ma J, Jia G, Zhang L, Zhang J (2017) Clinical features and surgical outcomes of patients with skull base chordoma: a retrospective analysis of 238 patients. J Neurosurg 127:1257–1267. https://doi.org/10.3171/2016.9.JNS16559

    Article  PubMed  Google Scholar 

  34. Wanibuchi M, Fukushima T, Zomordi AR, Nonaka Y, Friedman AH (2012) Trigeminal schwannomas: skull base approaches and operative results in 105 patients. Neurosurgery 70:132–143. https://doi.org/10.1227/NEU.0b013e31822efb21 (discussion 143-134)

    Article  PubMed  Google Scholar 

  35. Yoshida K, Kawase T (1999) Trigeminal neurinomas extending into multiple fossae: surgical methods and review of the literature. J Neurosurg 91:202–211. https://doi.org/10.3171/jns.1999.91.2.0202

    Article  CAS  PubMed  Google Scholar 

  36. Zanoletti E, Mazzoni A, Martini A, Abbritti RV, Albertini R, Alexandre E, Baro V, Bartolini S, Bernardeschi D, Bivona R, Bonali M, Borghesi I, Borsetto D, Bovo R, Breun M, Calbucci F, Carlson ML, Caruso A, Caye-Thomasen P, Cazzador D, Champagne PO, Colangeli R, Conte G, D’Avella D, Danesi G, Deantonio L, Denaro L, Di Berardino F, Draghi R, Ebner FH, Favaretto N, Ferri G, Fioravanti A, Froelich S, Giannuzzi A, Girasoli L, Grossardt BR, Guidi M, Hagen R, Hanakita S, Hardy DG, Iglesias VC, Jefferies S, Jia H, Kalamarides M, Kanaan IN, Krengli M, Landi A, Lauda L, Lepera D, Lieber S, Lloyd SLK, Lovato A, Maccarrone F, Macfarlane R, Magnan J, Magnoni L, Marchioni D, Marinelli JP, Marioni G, Mastronardi V, Matthies C, Moffat DA, Munari S, Nardone M, Pareschi R, Pavone C, Piccirillo E, Piras G, Presutti L, Restivo G, Reznitsky M, Roca E, Russo A, Sanna M, Sartori L, Scheich M, Shehata-Dieler W, Soloperto D, Sorrentino F, Sterkers O, Taibah A, Tatagiba M, Tealdo G, Vlad D, Wu H, Zanetti D (2019) Surgery of the lateral skull base: a 50-year endeavour. Acta Otorhinolaryngol Ital 39:S1–S146. https://doi.org/10.14639/0392-100X-suppl.1-39-2019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zoli M, Milanese L, Bonfatti R, Faustini-Fustini M, Marucci G, Tallini G, Zenesini C, Sturiale C, Frank G, Pasquini E, Mazzatenta D (2018) Clival chordomas: considerations after 16 years of endoscopic endonasal surgery. J Neurosurg 128:329–338. https://doi.org/10.3171/2016.11.JNS162082

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

For patient follow-up data, we express our gratitude to Drs. Tsutomu Masuda, Takuro Inoue, and Hiromi Goto. In addition, we would like to express our gratitude to Lori Radcliffe and James Carter, PA-C for data collection and editorial assistance.

Author information

Authors and Affiliations

Authors

Contributions

Conception and design: Udom, Fukushima. Acquisition of data: Udom, Fukushima. Analysis and interpretation of data: Udom. Drafting the article: Udom, Fukushima. Critically revising the article: Udom, Fukushima, Friedman, Zomorodi. Reviewed submitted version of manuscript: Udom, Fukushima, Friedman, Zomorodi. Approved the final version of the manuscript on behalf of all authors: Fukushima. Statistical analysis: Udom. Administrative/technical/material support: Udom. Study supervision: Fukushima.

Corresponding author

Correspondence to Udom Bawornvaraporn.

Ethics declarations

Ethics approval

All procedures performed in this study were in accordance with the ethical standards of Duke University Medical Center and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

For this retrospective type of study, individual formal consent is not required.

Conflict of interest

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest (such as honoraria; educational grants; participation in speakers’ bureaus; membership, employment, consultancies, stock ownership, or other equity interest; and expert testimony or patent-licensing arrangements) or nonfinancial interest (such as personal or professional relationships, affiliations, knowledge, or beliefs) in the subject matter or materials discussed in this manuscript.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This manuscript has not been published or presented elsewhere in part or in entirely.

This article is part of the Topical Collection on Brain Tumors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bawornvaraporn, U., Zomorodi, A.R., Friedman, A.H. et al. Neurosurgical management of petrous bone lesions: classification system and selection of surgical approaches. Acta Neurochir 163, 2895–2907 (2021). https://doi.org/10.1007/s00701-021-04934-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00701-021-04934-9

Keywords

Navigation