Skip to main content

Advertisement

Log in

Higher oscillatory shear index is related to aneurysm recanalization after coil embolization in posterior communicating artery aneurysms

  • Original Article - Vascular Neurosurgery - Aneurysm
  • Published:
Acta Neurochirurgica Aims and scope Submit manuscript

Abstract

Background

The recurrence rate of posterior communicating artery (Pcom) aneurysms after endovascular treatment (EVT) is higher than that for aneurysms located in other sites. However, it is still unclear what mechanisms are responsible for the recanalization of cerebral aneurysms. In this investigation, we compared hemodynamic factors related with recanalization of Pcom aneurysms treated by endoluminal coiling using computational fluid dynamics (CFD) with high-resolution three-dimensional digital subtraction angiography images.

Methods

Twenty patients were enrolled. A double-sinogram acquisition was performed with and without contrast injection after coil embolization to get true blood vessel lumen by relatively complementing the first sinogram with the second. Adaptive Cartesian meshing was performed to produce vascular wall objects for CFD simulation. The boundary condition for inlet (ICA) was set for dynamic velocity according to the cardiac cycle (0.8 s). Hemodynamic parameters were recorded at two specific points (branching point of Pcom and residual sac). The peak pressure, peak WSS, and oscillatory shear index (OSI) were recorded and analyzed.

Results

The median age was 61.0 years, and 18 patients (90%) were female. During a median follow-up of 12 months, seven (35%) treated aneurysms showed recanalization. The median aneurysm volume was significantly higher, and aneurysm height and neck sizes were significantly longer in the recanalization group than those in the stable group. At the branching point of the Pcom, the peak pressure, peak WSS, or OSI did not significantly differ between the two groups. The only statistically significant hemodynamic parameter related with recanalization was the OSI at the aneurysm point. Multivariate logistic regression showed that with an increase of 0.01 OSI at the aneurysm point, the odds ratio for the aneurysm recanalization was 1.19.

Conclusions

A higher OSI is related with recanalization after coil embolization for a Pcom aneurysm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

EVT:

Endovascular treatment

Pcom:

Posterior communicating artery

WSS:

Wall shear stress

OSI:

Oscillatory shear index

CFD:

Computational fluid dynamic

ICA:

Internal carotid artery

AIC:

Akaike information criterion

WSSG:

Wall shear stress gradient

References

  1. Babiker MH, Gonzalez LF, Ryan J, Albuquerque F, Collins D, Elvikis A, Frakes DH (2012) Influence of stent configuration on cerebral aneurysm fluid dynamics. J Biomech 45:440–447. https://doi.org/10.1016/j.jbiomech.2011.12.016

    Article  PubMed  Google Scholar 

  2. Ban SP, Hwang G, Kim CH, Byoun HS, Lee SU, Kim T, Bang JS, Oh CW, Kwon OK (2018) Risk factor analysis of recanalization and retreatment for patients with endovascular treatment of internal carotid artery bifurcation aneurysms. Neuroradiology 60:535–544. https://doi.org/10.1007/s00234-018-2013-5

    Article  PubMed  Google Scholar 

  3. Boussel L, Rayz V, McCulloch C, Martin A, Acevedo-Bolton G, Lawton M, Higashida R, Smith WS, Young WL, Saloner D (2008) Aneurysm growth occurs at region of low wall shear stress: patient-specific correlation of hemodynamics and growth in a longitudinal study. Stroke 39:2997–3002. https://doi.org/10.1161/STROKEAHA.108.521617

    Article  PubMed  PubMed Central  Google Scholar 

  4. Campi A, Ramzi N, Molyneux AJ, Summers PE, Kerr RS, Sneade M, Yarnold JA, Rischmiller J, Byrne JV (2007) Retreatment of ruptured cerebral aneurysms in patients randomized by coiling or clipping in the International Subarachnoid Aneurysm Trial (ISAT). Stroke 38:1538–1544. https://doi.org/10.1161/STROKEAHA.106.466987

    Article  PubMed  Google Scholar 

  5. Cho WS, Hong HS, Kang HS, Kim JE, Cho YD, Kwon OK, Bang JS, Hwang G, Son YJ, Oh CW, Han MH (2015) Stability of cerebral aneurysms after stent-assisted coil embolization: a propensity score-matched analysis. Neurosurgery 77:208–216; discussion 216-207. https://doi.org/10.1227/NEU.0000000000000759

    Article  PubMed  Google Scholar 

  6. Cho YD, Jung SC, Kim CH, Ahn JH, Kang HS, Kim JE, Han MH (2015) Posterior communicating artery compromise in coil embolization of posterior communicating artery aneurysms. Clin Neuroradiol 25:275–279. https://doi.org/10.1007/s00062-014-0308-4

    Article  CAS  PubMed  Google Scholar 

  7. Cho YD, Lee WJ, Kim KM, Kang HS, Kim JE, Han MH (2013) Stent-assisted coil embolization of posterior communicating artery aneurysms. AJNR Am J Neuroradiol 34:2171–2176. https://doi.org/10.3174/ajnr.A3541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Choi HH, Cho YD, Yoo DH, Lee HS, Kim SH, Jang D, Lee SH, Cho WS, Kang HS, Kim JE (2020) Impact of fetal-type posterior cerebral artery on recanalization of posterior communicating artery aneurysms after coil embolization: matched-pair case-control study. J Neurointerv Surg. https://doi.org/10.1136/neurintsurg-2019-015531

  9. Crawford T (1959) Some observations on the pathogenesis and natural history of intracranial aneurysms. J Neurol Neurosurg Psychiatry 22:259–266. https://doi.org/10.1136/jnnp.22.4.259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Crompton MR (1966) Mechanism of growth and rupture in cerebral berry aneurysms. Br Med J 1:1138–1142. https://doi.org/10.1136/bmj.1.5496.1138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. David CA, Vishteh AG, Spetzler RF, Lemole M, Lawton MT, Partovi S (1999) Late angiographic follow-up review of surgically treated aneurysms. J Neurosurg 91:396–401. https://doi.org/10.3171/jns.1999.91.3.0396

    Article  CAS  PubMed  Google Scholar 

  12. Endo H, Sato K, Kondo R, Matsumoto Y, Takahashi A, Tominaga T (2012) Tuberothalamic artery infarctions following coil embolization of ruptured posterior communicating artery aneurysms with posterior communicating artery sacrifice. AJNR Am J Neuroradiol 33:500–506. https://doi.org/10.3174/ajnr.A2828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ford MD, Nikolov HN, Milner JS, Lownie SP, Demont EM, Kalata W, Loth F, Holdsworth DW, Steinman DA (2008) PIV-measured versus CFD-predicted flow dynamics in anatomically realistic cerebral aneurysm models. J Biomech Eng 130:021015. https://doi.org/10.1115/1.2900724

    Article  PubMed  Google Scholar 

  14. Fukazawa K, Ishida F, Umeda Y, Miura Y, Shimosaka S, Matsushima S, Taki W, Suzuki H (2015) Using computational fluid dynamics analysis to characterize local hemodynamic features of middle cerebral artery aneurysm rupture points. World Neurosurg 83:80–86. https://doi.org/10.1016/j.wneu.2013.02.012

    Article  PubMed  Google Scholar 

  15. Fukuda S, Hashimoto N, Naritomi H, Nagata I, Nozaki K, Kondo S, Kurino M, Kikuchi H (2000) Prevention of rat cerebral aneurysm formation by inhibition of nitric oxide synthase. Circulation 101:2532–2538. https://doi.org/10.1161/01.cir.101.21.2532

    Article  CAS  PubMed  Google Scholar 

  16. Glor FP, Ariff B, Hughes AD, Crowe LA, Verdonck PR, Barratt DC, Mc GTSA, Firmin DN, Xu XY (2004) Image-based carotid flow reconstruction: a comparison between MRI and ultrasound. Physiol Meas 25:1495–1509. https://doi.org/10.1088/0967-3334/25/6/014

    Article  CAS  PubMed  Google Scholar 

  17. Glor FP, Long Q, Hughes AD, Augst AD, Ariff B, Thom SA, Verdonck PR, Xu XY (2003) Reproducibility study of magnetic resonance image-based computational fluid dynamics prediction of carotid bifurcation flow. Ann Biomed Eng 31:142–151. https://doi.org/10.1114/1.1537694

    Article  CAS  PubMed  Google Scholar 

  18. Griffith TM (1994) Modulation of blood flow and tissue perfusion by endothelium-derived relaxing factor. Exp Physiol 79:873–913. https://doi.org/10.1113/expphysiol.1994.sp003816

    Article  CAS  PubMed  Google Scholar 

  19. Guzman RJ, Abe K, Zarins CK (1997) Flow-induced arterial enlargement is inhibited by suppression of nitric oxide synthase activity in vivo. Surgery 122:273–279; discussion 279-280. https://doi.org/10.1016/s0039-6060(97)90018-0

    Article  CAS  PubMed  Google Scholar 

  20. Hara A, Yoshimi N, Mori H (1998) Evidence for apoptosis in human intracranial aneurysms. Neurol Res 20:127–130. https://doi.org/10.1080/01616412.1998.11740494

    Article  CAS  PubMed  Google Scholar 

  21. Hashimoto N, Handa H, Nagata I, Hazama F (1980) Experimentally induced cerebral aneurysms in rats: part V. Relation of hemodynamics in the circle of Willis to formation of aneurysms. Surg Neurol 13:41–45

    CAS  PubMed  Google Scholar 

  22. He X, Ku DN (1996) Pulsatile flow in the human left coronary artery bifurcation: average conditions. J Biomech Eng 118:74–82. https://doi.org/10.1115/1.2795948

    Article  CAS  PubMed  Google Scholar 

  23. He Z, Wan Y (2018) Is fetal-type posterior cerebral artery a risk factor for intracranial aneurysm as analyzed by multislice CT angiography? Exp Ther Med 15:838–846. https://doi.org/10.3892/etm.2017.5504

    Article  PubMed  Google Scholar 

  24. Irie K, Anzai H, Kojima M, Honjo N, Ohta M, Hirose Y, Negoro M (2012) Computational fluid dynamic analysis following recurrence of cerebral aneurysm after coil embolization. Asian J Neurosurg 7:109–115. https://doi.org/10.4103/1793-5482.103706

    Article  PubMed  PubMed Central  Google Scholar 

  25. Jou LD, Lee DH, Morsi H, Mawad ME (2008) Wall shear stress on ruptured and unruptured intracranial aneurysms at the internal carotid artery. AJNR Am J Neuroradiol 29:1761–1767. https://doi.org/10.3174/ajnr.A1180

    Article  PubMed  PubMed Central  Google Scholar 

  26. Jou LD, Wong G, Dispensa B, Lawton MT, Higashida RT, Young WL, Saloner D (2005) Correlation between lumenal geometry changes and hemodynamics in fusiform intracranial aneurysms. AJNR Am J Neuroradiol 26:2357–2363

    PubMed  PubMed Central  Google Scholar 

  27. Kawaguchi T, Nishimura S, Kanamori M, Takazawa H, Omodaka S, Sato K, Maeda N, Yokoyama Y, Midorikawa H, Sasaki T, Nishijima M (2012) Distinctive flow pattern of wall shear stress and oscillatory shear index: similarity and dissimilarity in ruptured and unruptured cerebral aneurysm blebs. J Neurosurg 117:774–780. https://doi.org/10.3171/2012.7.JNS111991

    Article  PubMed  Google Scholar 

  28. Kim C, Kikuchi H, Hashimoto N, Hazama F, Kataoka H (1989) Establishment of the experimental conditions for inducing saccular cerebral aneurysms in primates with special reference to hypertension. Acta Neurochir 96:132–136. https://doi.org/10.1007/bf01456172

    Article  CAS  PubMed  Google Scholar 

  29. Kim T, Heo J, Jang DK, Sunwoo L, Kim J, Lee KJ, Kang SH, Park SJ, Kwon OK, Oh CW (2019) Machine learning for detecting moyamoya disease in plain skull radiography using a convolutional neural network. EBioMedicine 40:636–642. https://doi.org/10.1016/j.ebiom.2018.12.043

    Article  PubMed  Google Scholar 

  30. Kim T, Kim CH, Kang SH, Ban SP, Kwon OK (2018) Relevance of antiplatelet therapy duration after stent-assisted coil embolization for unruptured intracranial aneurysms. World Neurosurg 116:e699–e708. https://doi.org/10.1016/j.wneu.2018.05.071

    Article  PubMed  Google Scholar 

  31. Kim YD, Bang JS, Lee SU, Jeong WJ, Kwon OK, Ban SP, Kim TK, Kim SB, Oh CW (2018) Long-term outcomes of treatment for unruptured intracranial aneurysms in South Korea: clipping versus coiling. J Neurointerv Surg 10:1218–1222. https://doi.org/10.1136/neurintsurg-2018-013757

    Article  PubMed  Google Scholar 

  32. Kondo S, Hashimoto N, Kikuchi H, Hazama F, Nagata I, Kataoka H (1997) Cerebral aneurysms arising at nonbranching sites. An experimental Study. Stroke 28:398–403; discussion 403-394. https://doi.org/10.1161/01.str.28.2.398

    Article  CAS  PubMed  Google Scholar 

  33. Ku DN, Giddens DP, Zarins CK, Glagov S (1985) Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low oscillating shear stress. Arteriosclerosis 5:293–302. https://doi.org/10.1161/01.atv.5.3.293

    Article  CAS  PubMed  Google Scholar 

  34. Lee UY, Jung J, Kwak HS, Lee DH, Chung GH, Park JS, Koh EJ (2018) Wall shear stress and flow patterns in unruptured and ruptured anterior communicating artery aneurysms using computational fluid dynamics. J Korean Neurosurg Soc 61:689–699. https://doi.org/10.3340/jkns.2018.0155

    Article  PubMed  PubMed Central  Google Scholar 

  35. Liepsch DW (1986) Flow in tubes and arteries--a comparison. Biorheology 23:395–433. https://doi.org/10.3233/bir-1986-23408

    Article  CAS  PubMed  Google Scholar 

  36. Molyneux A, Kerr R, Stratton I, Sandercock P, Clarke M, Shrimpton J, Holman R, International Subarachnoid Aneurysm Trial Collaborative G (2002) International Subarachnoid Aneurysm Trial (ISAT) of neurosurgical clipping versus endovascular coiling in 2143 patients with ruptured intracranial aneurysms: a randomised trial. Lancet 360:1267–1274. https://doi.org/10.1016/s0140-6736(02)11314-6

    Article  PubMed  Google Scholar 

  37. Moncada S, Palmer RM, Higgs EA (1991) Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev 43:109–142

    CAS  PubMed  Google Scholar 

  38. Nagata I, Handa H, Hashimoto N, Hazama F (1980) Experimentally induced cerebral aneurysms in rats: part VI. Hypertension. Surg Neurol 14:477–479

    CAS  PubMed  Google Scholar 

  39. Naggara ON, White PM, Guilbert F, Roy D, Weill A, Raymond J (2010) Endovascular treatment of intracranial unruptured aneurysms: systematic review and meta-analysis of the literature on safety and efficacy. Radiology 256:887–897. https://doi.org/10.1148/radiol.10091982

    Article  PubMed  Google Scholar 

  40. Nakatani H, Hashimoto N, Kang Y, Yamazoe N, Kikuchi H, Yamaguchi S, Niimi H (1991) Cerebral blood flow patterns at major vessel bifurcations and aneurysms in rats. J Neurosurg 74:258–262. https://doi.org/10.3171/jns.1991.74.2.0258

    Article  CAS  PubMed  Google Scholar 

  41. O’Shaughnessy BA, Getch CC, Bendok BR, Batjer HH (2003) Surgical management of unruptured posterior carotid artery wall aneurysms. Neurosurg Focus 15:E9. https://doi.org/10.3171/foc.2003.15.1.9

    Article  PubMed  Google Scholar 

  42. Raut SS, Liu P, Finol EA (2015) An approach for patient-specific multi-domain vascular mesh generation featuring spatially varying wall thickness modeling. J Biomech 48:1972–1981. https://doi.org/10.1016/j.jbiomech.2015.04.006

    Article  PubMed  PubMed Central  Google Scholar 

  43. Raymond J, Guilbert F, Weill A, Georganos SA, Juravsky L, Lambert A, Lamoureux J, Chagnon M, Roy D (2003) Long-term angiographic recurrences after selective endovascular treatment of aneurysms with detachable coils. Stroke 34:1398–1403. https://doi.org/10.1161/01.STR.0000073841.88563.E9

    Article  PubMed  Google Scholar 

  44. Rayz VL, Boussel L, Ge L, Leach JR, Martin AJ, Lawton MT, McCulloch C, Saloner D (2010) Flow residence time and regions of intraluminal thrombus deposition in intracranial aneurysms. Ann Biomed Eng 38:3058–3069. https://doi.org/10.1007/s10439-010-0065-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Roy D, Milot G, Raymond J (2001) Endovascular treatment of unruptured aneurysms. Stroke 32:1998–2004. https://doi.org/10.1161/hs0901.095600

    Article  CAS  PubMed  Google Scholar 

  46. Schonfeld MH, Forkert ND, Fiehler J, Cho YD, Han MH, Kang HS, Peach TW, Byrne JV (2019) Hemodynamic differences between recurrent and nonrecurrent intracranial aneurysms: fluid dynamics simulations based on MR angiography. J Neuroimaging 29:447–453. https://doi.org/10.1111/jon.12612

    Article  PubMed  Google Scholar 

  47. Sforza DM, Putman CM, Cebral JR (2009) Hemodynamics of cerebral aneurysms. Annu Rev Fluid Mech 41:91–107. https://doi.org/10.1146/annurev.fluid.40.111406.102126

    Article  PubMed  PubMed Central  Google Scholar 

  48. Sforza DM, Putman CM, Tateshima S, Vinuela F, Cebral JR (2012) Effects of perianeurysmal environment during the growth of cerebral aneurysms: a case study. AJNR Am J Neuroradiol 33:1115–1120. https://doi.org/10.3174/ajnr.A2908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Sho E, Sho M, Singh TM, Xu C, Zarins CK, Masuda H (2001) Blood flow decrease induces apoptosis of endothelial cells in previously dilated arteries resulting from chronic high blood flow. Arterioscler Thromb Vasc Biol 21:1139–1145. https://doi.org/10.1161/hq0701.092118

    Article  CAS  PubMed  Google Scholar 

  50. Sichtermann T, Faron A, Sijben R, Teichert N, Freiherr J, Wiesmann M (2019) Deep learning-based detection of intracranial aneurysms in 3D TOF-MRA. AJNR Am J Neuroradiol 40:25–32. https://doi.org/10.3174/ajnr.A5911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Songsaeng D, Geibprasert S, Willinsky R, Tymianski M, TerBrugge KG, Krings T (2010) Impact of anatomical variations of the circle of Willis on the incidence of aneurysms and their recurrence rate following endovascular treatment. Clin Radiol 65:895–901. https://doi.org/10.1016/j.crad.2010.06.010

    Article  CAS  PubMed  Google Scholar 

  52. Stehbens WE (1989) Etiology of intracranial berry aneurysms. J Neurosurg 70:823–831. https://doi.org/10.3171/jns.1989.70.6.0823

    Article  CAS  PubMed  Google Scholar 

  53. Steiger HJ (1990) Pathophysiology of development and rupture of cerebral aneurysms. Acta Neurochir Suppl (Wien) 48:1–57

    CAS  Google Scholar 

  54. Tanoue T, Tateshima S, Villablanca JP, Vinuela F, Tanishita K (2011) Wall shear stress distribution inside growing cerebral aneurysm. AJNR Am J Neuroradiol 32:1732–1737. https://doi.org/10.3174/ajnr.A2607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Thiarawat P, Jahromi BR, Kozyrev DA, Intarakhao P, Teo MK, Choque-Velasquez J, Niemela M, Hernesniemi J (2019) Are fetal-type posterior cerebral arteries associated with an increased risk of posterior communicating artery aneurysms? Neurosurgery 84:1306–1312. https://doi.org/10.1093/neuros/nyy186

    Article  PubMed  Google Scholar 

  56. Zada G, Breault J, Liu CY, Khalessi AA, Larsen DW, Teitelbaum GP, Giannotta SL (2008) Internal carotid artery aneurysms occurring at the origin of fetal variant posterior cerebral arteries: surgical and endovascular experience. Neurosurgery 63:ONS55–ONS61; discussion ONS61-52. https://doi.org/10.1227/01.neu.0000335012.37875.7d

    Article  PubMed  Google Scholar 

Download references

Funding

This study was supported by grant no. 02-2015-028 from the Seoul National University Bundang Hospital Research Fund and by grant no. 14-2015-003 from the Seoul National University Bundang Hospital Research Fund.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Tackeun Kim, O-Ki Kwon. Data curation and analysis: Tackeun Kim. Funding acquisition: Tackeun Kim, O-Ki Kwon. Methodology: Tackeun Kim, Chang Wan Oh, Jae Seung Bang, Seung Pil Ban, Young Deok Kim. Project administration: O-Ki Kwon. Writing–original draft: Tackeun Kim. Writing–review and editing: Chang Wan Oh, Jae Seung Bang, Seung Pil Ban, Young Deok Kim, O-Ki Kwon

Corresponding author

Correspondence to O-Ki Kwon.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This study was approved by the institutional review board of Seoul National University Bundang Hospital (IRB No. B-1509-314-111) and therefore was performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki and its later amendments.

Informed consent

Informed consents were waived by the institutional review board.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Vascular Neurosurgery - Aneurysm

Presentation at a conference

None.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, T., Oh, C.W., Bang, J.S. et al. Higher oscillatory shear index is related to aneurysm recanalization after coil embolization in posterior communicating artery aneurysms. Acta Neurochir 163, 2327–2337 (2021). https://doi.org/10.1007/s00701-020-04607-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00701-020-04607-z

Keywords

Navigation