Cut-off values for sufficient cortisol response to low dose Short Synacthen Test after surgery for non-functioning pituitary adenoma

  • Anders Jensen KolnesEmail author
  • Kristin Astrid Øystese
  • Daniel Dahlberg
  • Jon Berg–Johnsen
  • Pitt Niehusmann
  • Jens Pahnke
  • Jens Bollerslev
  • Anders Palmstrøm Jørgensen
Original Article - Pituitaries
Part of the following topical collections:
  1. Pituitaries



The aim was to study the prevalence of secondary adrenal insufficiency before and after surgery for non-functioning pituitary adenomas, as well as determine risk factors for developing secondary adrenal insufficiency. A secondary aim was to determine adequate p-cortisol response to a 1-μg Short Synacthen Test after surgery.


Longitudinal cohort study.


One hundred seventeen patients (52/65 females/males, age 59 years) undergoing primary surgery for clinically non-functioning pituitary adenomas were included. P-cortisol was measured in morning blood samples. Three months after surgery, a Short Synacthen Test was performed.


All tumours were macroadenomas (mean size 26.9 mm, range 13–61 mm). The surgical indications were visual impairment (93), tumour growth (16), pituitary apoplexy (6) and headache (2). Before surgery, 17% of the patients had secondary adrenal insufficiency (SAI), decreasing to 15% 3 months postoperatively. Risk of SAI was increased in patients operated for pituitary apoplexy (p < 0.001), while age, sex, tumour size and complication rate were not different from the remaining cohort. Three months after surgery, all patients with baseline p-cortisol ≥ 172 nmol/l (6.2 μg/dl) and peak p-cortisol during Short Synacthen Test ≥ 320 nmol/l (11.6 μg/dl) tapered cortisone unproblematically. In patients with intact hypothalamic-pituitary-adrenal axis, p-cortisol peaked < 500 nmol/l (18.1 μg/dl) during Short Synacthen Test in 48% of patient.


Pituitary surgery is safe and transsphenoidal surgery rarely causes new SAI. Relying solely on morning p-cortisol for diagnosing secondary adrenal insufficiency gives false positives and the Short Synacthen Test remains useful. A peak p-cortisol ≥ 320 during (11.6 μg/dl) Short Synacthen Test indicates a sufficient response, while < 309 nmol/l (11.2 μg/dl) indicates secondary adrenal insufficiency.


Non-functioning pituitary adenoma Short Synacthen Test Secondary adrenal insufficiency Pituitary surgery 



We thank Kari Abelsen and Ansgar Heck for assistance and support. This study was based on routine practice at the Section of Specialized Endocrinology, Rikshospitalet, Oslo University Hospital in Oslo, and did not receive additional funding.

Compliance with ethical standards

Conflict of interest

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest (such as honoraria; educational grants; participation in speakers’ bureaus; membership, employment, consultancies, stock ownership, or other equity interest; and expert testimony or patent-licensing arrangements) or non-financial interest (such as personal or professional relationships, affiliations, knowledge or beliefs) in the subject matter or materials discussed in this manuscript.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the hospital authority, regional ethics committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.


  1. 1.
    Abdu TAM, Elhadd TA, Neary R, Clayton RN (1999) Comparison of the low dose short Synacthen test (1 μg), the conventional dose short Synacthen test (250 μg), and the insulin tolerance test for assessment of the hypothalamo-pituitary-adrenal axis in patients with pituitary disease. J Clin Endocrinol Metab 84(3):838–843PubMedGoogle Scholar
  2. 2.
    Agustsson TT, Baldvinsdottir T, Jonasson JG, Olafsdottir E, Steinthorsdottir V, Sigurdsson G, Thorsson AV, Carroll PV, Korbonits M, Benediktsson R (2015) The epidemiology of pituitary adenomas in Iceland, 1955–2012: a nationwide population-based study. Eur J Endocrinol 173(5):655–664CrossRefGoogle Scholar
  3. 3.
    Ajlan A, Almufawez KA, Albakr A, Katznelson L, Harsh GR (2018) Adrenal axis insufficiency after endoscopic transsphenoidal resection of pituitary adenomas. World Neurosurg 112:e869–e875CrossRefGoogle Scholar
  4. 4.
    Barker FG, Klibanski A, Swearingen B (2003) Transsphenoidal surgery for pituitary tumors in the United States, 1996–2000: mortality, morbidity, and the effects of hospital and surgeon volume. J Clin Endocrinol Metab 88(10):4709–4719CrossRefGoogle Scholar
  5. 5.
    Briet C, Salenave S, Bonneville J-F, Laws ER, Chanson P (2015) Pituitary apoplexy. Endocr Rev 36(6):622–645CrossRefGoogle Scholar
  6. 6.
    Caputo C, Sutherland T, Farish S, McNeill P, Ng KW, Inder WJ (2013) Gender differences in presentation and outcome of nonfunctioning pituitary macroadenomas. Clin Endocrinol 78(4):564–570CrossRefGoogle Scholar
  7. 7.
    Charmandari E, Nicolaides NC, Chrousos GP (2014) Adrenal insufficiency. Lancet 383(9935):2152–2167CrossRefGoogle Scholar
  8. 8.
    Chen L, White WL, Spetzler RF, Xu B (2011) A prospective study of nonfunctioning pituitary adenomas: presentation, management, and clinical outcome. J Neuro-Oncol 102(1):129–138CrossRefGoogle Scholar
  9. 9.
    Dallapiazza RF, Grober Y, Starke RM, Laws ER, Jane JA (2015) Long-term results of endonasal endoscopic transsphenoidal resection of nonfunctioning pituitary macroadenomas. Neurosurgery 76(1):42–53CrossRefGoogle Scholar
  10. 10.
    Dekkers OM, van der Klaauw AA, Pereira AM, Biermasz NR, Honkoop PJ, Roelfsema F, Smit JWA, Romijn JA (2006) Quality of life is decreased after treatment for nonfunctioning pituitary macroadenoma. J Clin Endocrinol Metab 91(9):3364–3369CrossRefGoogle Scholar
  11. 11.
    Dekkers OM, Pereira AM, Roelfsema F, Voormolen JHC, Neelis KJ, Schroijen MA, Smit JWA, Romijn JA (2006) Observation alone after transsphenoidal surgery for nonfunctioning pituitary macroadenoma. J Clin Endocrinol Metab 91(5):1796–1801CrossRefGoogle Scholar
  12. 12.
    Dekkers OM, Pereira AM, Romijn JA (2008) Treatment and follow-up of clinically nonfunctioning pituitary macroadenomas. J Clin Endocrinol Metab 93(10):3717–3726CrossRefGoogle Scholar
  13. 13.
    Fatemi N, Dusick JR, Mattozo C, McArthur DL, Cohan P, Boscardin J, Wang C, Swerdloff RS, Kelly DF (2008) Pituitary hormonal loss and recovery after transsphenoidal adenoma removal. Neurosurgery 63(4):709–719CrossRefGoogle Scholar
  14. 14.
    Fernandez-Rodriguez E, Lopez-Raton M, Andujar P, Martinez-Silva IM, Cadarso-Suarez C, Casanueva FF, Bernabeu I (2013) Epidemiology, mortality rate and survival in a homogeneous population of hypopituitary patients. Clin Endocrinol 78(2):278–284CrossRefGoogle Scholar
  15. 15.
    Filipsson H, Monson JP, Koltowska-Häggström M, Mattsson A, Johannsson G (2006) The impact of glucocorticoid replacement regimens on metabolic outcome and comorbidity in hypopituitary patients. J Clin Endocrinol Metab 91(10):3954–3961CrossRefGoogle Scholar
  16. 16.
    Freda PU, Beckers AM, Katznelson L, Molitch ME, Montori VM, Post KD, Vance ML (2011) Pituitary incidentaloma: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab 96(4):894–904CrossRefGoogle Scholar
  17. 17.
    Gonzálbez J, Villabona C, Ramón J, Navarro MA, Giménez O, Ricart W, Soler J (2000) Establishment of reference values for standard dose short synacthen test (250 μg), low dose short Synacthen test (1 μg) and insulin tolerance test for assessment of the hypothalamo–pituitary–adrenal axis in normal subjects. Clin Endocrinol 53(2):199–204CrossRefGoogle Scholar
  18. 18.
    Greenman Y, Ouaknine G, Veshchev I, Reider-Groswasser II, Segev Y, Stern N (2003) Postoperative surveillance of clinically nonfunctioning pituitary macroadenomas: markers of tumour quiescence and regrowth. Clin Endocrinol 58(6):763–769CrossRefGoogle Scholar
  19. 19.
    Halvorsen H, Ramm-Pettersen J, Josefsen R, Rønning P, Reinlie S, Meling T, Berg-Johnsen J, Bollerslev J, Helseth E (2014) Surgical complications after transsphenoidal microscopic and endoscopic surgery for pituitary adenoma: a consecutive series of 506 procedures. Acta Neurochir 156(3):441–449CrossRefGoogle Scholar
  20. 20.
    Hammarstrand C, Ragnarsson O, Hallén T, Andersson E, Skoglund T, Nilsson AG, Johannsson G, Olsson DS (2017) Higher glucocorticoid replacement doses are associated with increased mortality in patients with pituitary adenoma. Eur J Endocrinol 177(3):251–256CrossRefGoogle Scholar
  21. 21.
    Jahangiri A, Wagner JR, Pekmezci M, Hiniker A, Chang EF, Kunwar S, Blevins L, Aghi MK (2013) A comprehensive long-term retrospective analysis of silent corticotrophic adenomas vs hormone-negative adenomas. Neurosurgery 73(1):8–18CrossRefGoogle Scholar
  22. 22.
    Klose M, Lange M, Kosteljanetz M, Poulsgaard L, Feldt-Rasmussen U (2005) Adrenocortical insufficiency after pituitary surgery: an audit of the reliability of the conventional short Synacthen test. Clin Endocrinol 63(5):499–505CrossRefGoogle Scholar
  23. 23.
    Lindholm J, Kehlet H (1987) Re-evaluation of the clinical value of the 30 min ACTH test in assessing the hypothalamic-pituitary-adrenocortical function. Clin Endocrinol 26(1):53–59CrossRefGoogle Scholar
  24. 24.
    Mayenknecht J, Diederich S, Bähr V, Plöckinger U, Oelkers W (1998) Comparison of low and high dose corticotropin stimulation tests in patients with pituitary disease. J Clin Endocrinol Metab 83(5):1558–1562CrossRefGoogle Scholar
  25. 25.
    Nomikos P, Ladar C, Fahlbusch R, Buchfelder M (2004) Impact of primary surgery on pituitary function in patients with non-functioning pituitary adenomas—a study on 721 patients. Acta Neurochir 146(1):27–35CrossRefGoogle Scholar
  26. 26.
    Puar THK, Stikkelbroeck NMML, Smans LCCJ, Zelissen PMJ, Hermus ARMM (2016) Adrenal crisis: still a deadly event in the 21st century. Am J Med 129(3):339.e1–339.e9CrossRefGoogle Scholar
  27. 27.
    Regal M, Páramo C, Sierra JM, García-Mayor RV (2001) Prevalence and incidence of hypopituitarism in an adult Caucasian population in northwestern Spain. Clin Endocrinol 55(6):735–740CrossRefGoogle Scholar
  28. 28.
    Tjörnstrand A, Gunnarsson K, Evert M, Holmberg E, Ragnarsson O, Rosén T, Filipsson Nyström H (2014) The incidence rate of pituitary adenomas in western Sweden for the period 2001–2011. Eur J Endocrinol 171(4):519–526CrossRefGoogle Scholar
  29. 29.
    Tomlinson J, Holden N, Hills R, Wheatley K, Clayton R, Bates A, Sheppard M, Stewart P (2001) Association between premature mortality and hypopituitarism. Lancet 357(9254):425–431CrossRefGoogle Scholar
  30. 30.
    Webb SM, Rigla M, Wägner A, Oliver B, Bartumeus F (1999) Recovery of hypopituitarism after neurosurgical treatment of pituitary adenomas. J Clin Endocrinol Metab 84(10):3696–3700CrossRefGoogle Scholar
  31. 31.
    Wei L, MacDonald TM, Walker BR (2004) Taking glucocorticoids by prescription is associated with subsequent cardiovascular disease. Ann Intern Med 141(10):764CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2020

Authors and Affiliations

  • Anders Jensen Kolnes
    • 1
    • 2
    Email author
  • Kristin Astrid Øystese
    • 1
  • Daniel Dahlberg
    • 3
  • Jon Berg–Johnsen
    • 2
    • 3
  • Pitt Niehusmann
    • 4
  • Jens Pahnke
    • 2
    • 4
  • Jens Bollerslev
    • 1
    • 2
  • Anders Palmstrøm Jørgensen
    • 1
  1. 1.Section of Specialized EndocrinologyRikshospitalet, Oslo University HospitalOsloNorway
  2. 2.Faculty of MedicineUniversity of OsloOsloNorway
  3. 3.Department of NeurosurgeryRikshospitalet, Oslo University HospitalOsloNorway
  4. 4.Department of Neuro-/pathologyOslo University HospitalOsloNorway

Personalised recommendations