Skip to main content

Advertisement

Log in

Use of intraoperative intracavitary (direct-contact) ultrasound for resection control in transsphenoidal surgery for pituitary tumors: evaluation of a microsurgical series

  • Original Article - Pituitaries
  • Published:
Acta Neurochirurgica Aims and scope Submit manuscript

Abstract

Background

Perisellar infiltration may be responsible for incomplete removal of pituitary tumors. Since intraoperative visualization of parasellar structures is difficult during transsphenoidal surgery, we are describing the use of intraoperative direct contact ultrasound (IOUS).

Methods

Within 5 years, in 113 transsphenoidal operations (58 male, 55 female, age 14–81 years, 110 pituitary adenomas (mean diameter 26.6 mm, 69 non-secreting adenomas, 41 secreting adenomas), and 1 of each Rathke’s cleft cyst, craniopharyngioma, and xanthogranuloma), IOUS was applied. After wide opening of the sellar floor and removal of the intrasellar tumor portions, a commercially available side fire ultrasound probe is introduced, and in direct contact to the sellar envelope, the perisellar space is scanned perpendicular to the axis of the working channel. We compared the results of IOUS to postoperative MRI after 3–6 months.

Results

Identification of the intracavernous ICA, the anterior optic pathway, and the ACA, was possible, it was safe to operate close to them. In 65 operations (58%), further resection of tumor remnants was performed after IOUS. In this selected series, complete resection of tumors (stated by postoperative MRI after 3–6 months) was achieved in 75 operations (66%) and remission was achieved in 18 operations of secreting adenomas (44%). Compared to MRI after 3 to 6 months, the sensitivity of IOUS was 0.568 and the specificity was 0.907. No complications related to IOUS were seen.

Conclusions

Visualization of the perisellar compartments by IOUS is easy and fast to perform. It allows the surgeon to identify resectable tumor remnants intraoperatively, which otherwise could be missed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

Abbreviations

ACA:

Anterior cerebral artery

ACTH:

Adrenocorticotropic hormone

ADH:

Antidiuretic hormone

A1:

A1-segment of ACA

CS:

Cavernous sinus

CSF:

Cerebrospinal fluid

CT:

Computed tomography

GH:

Growth hormone

ICA:

Internal carotid artery

IGF-1:

Insulin-like growth factor 1

IOUS:

Intraoperative ultrasound

MRI:

Magnetic resonance imaging

OC:

Optic chiasm

ON:

Optic nerve

PRL:

Prolactin

SIADH:

Syndrome of inappropriate ADH secretion

TSH:

Thyroid-stimulating hormone

References

  1. Ammirati M, Wei L, Ciric I (2013) Short-term outcome of endoscopic versus microscopic pituitary adenoma surgery: a systematic review and meta-analysis. J Neurol Neurosurg Psychiatry 84:843–849

    Article  PubMed  Google Scholar 

  2. Anand VK, Schwartz TH, Hiltzik DH, Kacker A (2006) Endoscopic transphenoidal pituitary surgery with real-time intraoperative magnetic resonance imaging. Am J Rhinol 20:401–405

    Article  PubMed  Google Scholar 

  3. Arita K, Kurisu K, Tominaga A, Kawamoto H, Iida K, Mizoue T, Pant B, Uozumi T (1998) Trans-sellar color Doppler ultrasonography during transsphenoidal surgery. Neurosurgery 42:81–85

    Article  CAS  PubMed  Google Scholar 

  4. Atkinson JL, Kasperbauer JL, James EM, Lane JI, Nippoldt TB (2000) Transcranial-transdural real-time ultrasonography during transsphenoidal resection of a large pituitary tumor. Case report. J Neurosurg 93:129–131

    Article  CAS  PubMed  Google Scholar 

  5. Barzaghi LR, Losa M, Giovanelli M, Mortini P (2007) Complications of transsphenoidal surgery in patients with pituitary adenoma: experience at a single Centre. Acta Neurochir 149:877–885

    Article  CAS  PubMed  Google Scholar 

  6. Bohinski RJ, Warnick RE, Gaskill-Shipley MF, Zuccarello M, van Loveren HR, Kormos DW, Tew JM Jr (2001) Intraoperative magnetic resonance imaging to determine the extent of resection of pituitary macroadenomas during transsphenoidal microsurgery. Neurosurgery 49:1133–1143

    CAS  PubMed  Google Scholar 

  7. Cappabianca P, Cavallo LM, Colao A, Del Basso De Caro M, Esposito F, Cirillo S, Lombardi G, de Divitiis E (2002) Endoscopic endonasal transsphenoidal approach: outcome analysis of 100 consecutive procedures. Minim Invasive Neurosurg 45:193–200

    Article  CAS  PubMed  Google Scholar 

  8. Cappabianca P, Cavallo LM, de Divitiis O, Solari D, Esposito F, Colao A (2008) Endoscopic pituitary surgery. Pituitary 11:385–390

    Article  PubMed  Google Scholar 

  9. Dehdashti AR, Ganna A, Karabatsou K, Gentili F (2008) Pure endoscopic endonasal approach for pituitary adenomas: early surgical results in 200 patients and comparison with previous microsurgical series. Neurosurgery 62:1006–1015

    Article  PubMed  Google Scholar 

  10. Elias WJ, Chadduck JB, Alden TD, Laws ER Jr (1999) Frameless stereotaxy for transsphenoidal surgery. Neurosurgery 45:271–275

    Article  CAS  PubMed  Google Scholar 

  11. Fahlbusch R, Ganslandt O, Buchfelder M, Schott W, Nimsky C (2001) Intraoperative magnetic resonance imaging during transsphenoidal surgery. J Neurosurg 95:381–390

    Article  CAS  PubMed  Google Scholar 

  12. Furtado SV, Thakar S, Hegde AS (2012) The use of image guidance in avoiding vascular injury during trans-sphenoidal access and decompression of recurrent pituitary adenomas. J Craniomaxillofac Surg 40:680–684

    Article  PubMed  Google Scholar 

  13. Gerlach R, du Mesnil de Rochemont R, Gasser T, Marquardt G, Reusch J, Imoehl L, Seifert V (2008) Feasibility of Polestar N20, an ultra-low-field intraoperative magnetic resonance imaging system in resection control of pituitary macroadenomas: lessons learned from the first 40 cases. Neurosurgery 63:272–284

    Article  PubMed  Google Scholar 

  14. Greenman Y, Ouaknine G, Veshchev I, Reider G II, Segev Y, Stern N (2003) Postoperative surveillance of clinically nonfunctioning pituitary macroadenomas: markers of tumour quiescence and regrowth. Clin Endocrinol 58:763–769

    Article  CAS  Google Scholar 

  15. Hazer DB, Isik S, Berker D, Guler S, Gurlek A, Yucel T, Berker M (2013) Treatment of acromegaly by endoscopic transsphenoidal surgery: surgical experience in 214 cases and cure rates according to current consensus criteria. J Neurosurg 119:1467–1477

    Article  PubMed  Google Scholar 

  16. Honegger J, Ernemann U, Psaras T, Will B (2007) Objective criteria for successful transsphenoidal removal of suprasellar nonfunctioning pituitary adenomas. A prospective study. Acta Neurochir 149:21–29

    Article  CAS  PubMed  Google Scholar 

  17. Ishikawa M, Ota Y, Yoshida N, Iino Y, Tanaka Y, Watanabe E (2015) Endonasal ultrasonography-assisted neuroendoscopic transsphenoidal surgery. Acta Neurochir 157:863–868

    Article  PubMed  Google Scholar 

  18. Ito M, Kuge A, Matsuda KI, Sato S, Kayama T, Sonoda Y (2017) The likelihood of remnant nonfunctioning pituitary adenomas shrinking is associated with the lesion’s blood supply pattern. World Neurosurg 107:137–141

    Article  PubMed  Google Scholar 

  19. Jane JA, Jr L, Laws ER (2001) The surgical management of pituitary adenomas in a series of 3,093 patients. J Am Coll Surg 193:651–659

    Article  PubMed  Google Scholar 

  20. Jho HD, Park IS, Alfieri A (2000) The future of pituitary surgery. Clin Neurosurg 47:83–98

    CAS  PubMed  Google Scholar 

  21. Knappe UJ, Engelbach M, Konz K, Lakomek HJ, Saeger W, Schonmayr R, Mann WA (2011) Ultrasound-assisted microsurgery for Cushing’s disease. Exp Clin Endocrinol Diabetes 119:191–200

    Article  CAS  PubMed  Google Scholar 

  22. Knosp E, Steiner E, Kitz K, Matula C (1993) Pituitary adenomas with invasion of the cavernous sinus space: a magnetic resonance imaging classification compared with surgical findings. Neurosurgery 33:610–617

    CAS  PubMed  Google Scholar 

  23. Losa M, Mortini P, Barzaghi R, Ribotto P, Terreni MR, Marzoli SB, Pieralli S, Giovanelli M (2008) Early results of surgery in patients with nonfunctioning pituitary adenoma and analysis of the risk of tumor recurrence. J Neurosurgery 108:525–532

    Article  Google Scholar 

  24. Marcus HJ, Vercauteren T, Ourselin S, Dorward NL (2017) Intraoperative ultrasound in patients undergoing transsphenoidal surgery for pituitary adenoma: systematic review [corrected]. World Neurosurg 106:680–685

    Article  PubMed  Google Scholar 

  25. Mattozo CA, Dusick JR, Esposito F, Mora H, Cohan P, Malkasian D, Kelly DF (2006) Suboptimal sphenoid and sellar exposure: a consistent finding in patients treated with repeat transsphenoidal surgery for residual endocrine-inactive macroadenomas. Neurosurgery 58:857–865

    Article  PubMed  Google Scholar 

  26. McLaughlin N, Eisenberg AA, Cohan P, Chaloner CB, Kelly DF (2013) Value of endoscopy for maximizing tumor removal in endonasal transsphenoidal pituitary adenoma surgery. J Neurosurg 118:613–620

    Article  PubMed  Google Scholar 

  27. Micko AS, Wohrer A, Wolfsberger S, Knosp E (2015) Invasion of the cavernous sinus space in pituitary adenomas: endoscopic verification and its correlation with an MRI-based classification. J Neurosurg 122:803–811

    Article  PubMed  Google Scholar 

  28. Mortini P, Losa M, Barzaghi R, Boari N, Giovanelli M (2005) Results of transsphenoidal surgery in a large series of patients with pituitary adenoma. Neurosurgery 56:1222–1233

    Article  PubMed  Google Scholar 

  29. Nimsky C, Rachinger J, Iro H, Fahlbusch R (2004) Adaptation of a hexapod-based robotic system for extended endoscope-assisted transsphenoidal skull base surgery. Minim Invasive Neurosurg 47:41–46

    Article  PubMed  Google Scholar 

  30. Nimsky C, von Keller B, Ganslandt O, Fahlbusch R (2006) Intraoperative high-field magnetic resonance imaging in transsphenoidal surgery of hormonally inactive pituitary macroadenomas. Neurosurgery 59:105–114

    Article  PubMed  Google Scholar 

  31. Ota Y, Mami I (2013) Ultrasonography imaging during nasal endoscopic transsphenoidal surgery. J Otorhinolaryngol Relat Spec 75:27–31

    Article  CAS  Google Scholar 

  32. Otori N, Haruna S, Kamio M, Ohashi G, Moriyama H (2001) Endoscopic transethmosphenoidal approach for pituitary tumors with image guidance. Am J Rhinol 15:381–386

    Article  CAS  PubMed  Google Scholar 

  33. Ram Z, Shawker TH, Bradford MH, Doppman JL, Oldfield EH (1995) Intraoperative ultrasound-directed resection of pituitary tumors. J Neurosurg 83:225–230

    Article  CAS  PubMed  Google Scholar 

  34. Ram Z, Bruck B, Hadani M (1999) Ultrasound in pituitary tumor surgery. Pituitary 2:133–138

    Article  CAS  PubMed  Google Scholar 

  35. Schwartz TH, Stieg PE, Anand VK (2006) Endoscopic transsphenoidal pituitary surgery with intraoperative magnetic resonance imaging. Neurosurgery 58:ONS44–ONS51

    PubMed  Google Scholar 

  36. Solheim O, Selbekk T, Lovstakken L, Tangen GA, Solberg OV, Johansen TF, Cappelen J, Unsgard G (2010) Intrasellar ultrasound in transsphenoidal surgery: a novel technique. Neurosurgery 66:173–185

    Article  PubMed  Google Scholar 

  37. Solheim O, Johansen TF, Cappelen J, Unsgard G, Selbekk T (2016) Transsellar ultrasound in pituitary surgery with a designated probe: early experiences. Oper Neurosurg (Hagerstown) 12:128–134

    Google Scholar 

  38. Suzuki R, Asai J, Nagashima G, Itokawa H, Chang CW, Noda M, Fujimoto M, Fujimoto T (2004) Transcranial echo-guided transsphenoidal surgical approach for the removal of large macroadenomas. J Neurosurg 100:68–72

    Article  PubMed  Google Scholar 

  39. Thomale UW, Stover JF, Unterberg AW (2005) The use of neuronavigation in transnasal transsphenoidal pituitary surgery. Zentralbl Neurochir 66:126–132

    Article  PubMed  Google Scholar 

  40. Uhl E, Zausinger S, Morhard D, Heigl T, Scheder B, Rachinger W, Schichor C, Tonn JC (2009) Intraoperative computed tomography with integrated navigation system in a multidisciplinary operating suite. Neurosurgery 64:231–239

    Article  PubMed  Google Scholar 

  41. van Lindert EJ, Grotenhuis JA (2005) New endoscope shaft for endoscopic transsphenoidal pituitary surgery. Neurosurgery 57:203–206

    PubMed  Google Scholar 

  42. Wagenmakers MA, Boogaarts HD, Roerink SH, Timmers HJ, Stikkelbroeck NM, Smit JW, van Lindert EJ, Netea-Maier RT, Grotenhuis JA, Hermus AR (2013) Endoscopic transsphenoidal pituitary surgery: a good and safe primary treatment option for Cushing’s disease, even in case of macroadenomas or invasive adenomas. Eur J Endocrinol 169:329–337

    Article  CAS  PubMed  Google Scholar 

  43. Watson JC, Shawker TH, Nieman LK, DeVroom HL, Doppman JL, Oldfield EH (1998) Localization of pituitary adenomas by using intraoperative ultrasound in patients with Cushing’s disease and no demonstrable pituitary tumor on magnetic resonance imaging. J Neurosurg 89:927–932

    Article  CAS  PubMed  Google Scholar 

  44. Wolfsberger S, Ba-Ssalamah A, Pinker K, Mlynarik V, Czech T, Knosp E, Trattnig S (2004) Application of three-tesla magnetic resonance imaging for diagnosis and surgery of sellar lesions. J Neurosurg 100:278–286

    Article  PubMed  Google Scholar 

  45. Yamasaki T, Moritake K, Hatta J, Nagai H (1996) Intraoperative monitoring with pulse Doppler ultrasonography in transsphenoidal surgery: technique application. Neurosurgery 38:95–97

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This manuscript contains essential parts of the thesis of Dr. Med. Ali Alomari.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich J. Knappe.

Ethics declarations

Conflict of interest

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest (such as honoraria; educational grants; participation in speaker’s bureaus; membership, employment, consultancies, stock ownership, or other equity interest; and expert testimony or patient-licensing arrangements), or non-financial interest (such as personal or professional relationships, affiliations, knowledge or beliefs) in the subject matter or materials discussed in this manuscript.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee (Ethikkommission der Ärztekammer Westfalen-Lippe, Universität Muenster) and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

For this type of study formal consent is not required.

Additional information

This article is part of the Topical Collection on Pituitaries

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alomari, A., Jaspers, C., Reinbold, WD. et al. Use of intraoperative intracavitary (direct-contact) ultrasound for resection control in transsphenoidal surgery for pituitary tumors: evaluation of a microsurgical series. Acta Neurochir 161, 109–117 (2019). https://doi.org/10.1007/s00701-018-3747-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00701-018-3747-x

Keywords

Navigation