The timing of stereotactic radiosurgery for medically refractory trigeminal neuralgia: the evidence from diffusion tractography images
Abstract
Background
Diffusion tensor imaging (DTI) is a novel MRI technique that enables noninvasive evaluation of microstructural alterations in white matter of brain. Initially, DTI was used in intra- or inter-hemispheric association bundles. Recent technical advances are overcoming the challenges of imaging small white matter bundles, such as the cranial nerves. In this study, we use DTI to shed more light on the microstructure changes in long-standing trigeminal neuralgia. We also utilize DTI to study the effect of early stereotactic radiosurgery (SRS) on the microstructures of the trigeminal nerve and to predict the effectiveness of early SRS in the treatment of medically refractory trigeminal neuralgia (TN).
Methods
To analyze the presentation of trigeminal nerve, the DTI was reconstructed in 21 cases pre- and post-SRS. DTI parameters recorded include fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD), axial diffusivity (AD), linear anisotropy coefficient (Cl), planar anisotropy coefficient (Cp), and spherical anisotropy coefficient (Cs). Comparisons between ipsilateral (symptomatic) and contralateral (asymptomatic) trigeminal nerves and symptom durations of < 5 and ≧ 5 years were performed.
Results
The study cohort comprised 21 patients with TN with a median age of 66 years. Initial adequate facial pain relief (Barrow Neurological Institute facial pain scores I–IIIb) was achieved in 16 (76%) patients. For the pre-SRS DTI findings, ipsilateral trigeminal nerve was associated with higher baseline root entry zone (REZ) Cs compared to contralateral nerve (0.774 vs. 0.743, p = 0.04). Ipsilateral trigeminal nerve with symptoms of < 5 years was associated with higher baseline FA compared to trigeminal nerve with symptoms of ≧ 5 years (0.314 vs. 0.244, p = 0.02). For the post-SRS DTI findings, ipsilateral trigeminal nerves with symptoms of <5 years demonstrated decrease in Cl, while those with symptoms ≧ 5 years demonstrated increase in Cl after SRS at the ipsilateral REZ (− 0.025 vs. 0.018, p = 0.04). At the cisternal segment of ipsilateral trigeminal nerve, symptoms of < 5 years were associated with decreased FA and increased λ2, while symptoms of ≧ 5 years were associated with increased FA and decreased λ2 after SRS (FA − 0.068 vs. 0.031, p = 0.04, λ2 0.0003 vs. − 0.0002, p = 0.02).
Conclusions
SRS provides high rates of initial pain relief with moderate rates of facial hypoesthesia. Ipsilateral trigeminal nerve was associated with higher baseline REZ Cs, and baseline FA was associated with duration of symptoms. There were significant associations between duration of symptoms and changes in ipsilateral REZ Cl, cisternal segment FA, and cisternal segment λ2 after SRS. These preliminary findings serve as comparisons for future studies investigating the use of DTI in radiosurgical planning for patients with TN.
Keywords
Diffusion tensor imaging Fractional anisotropy Radial diffusivity Axial diffusivity Trigeminal neuralgia Stereotactic radiosurgery Radiation Facial painAbbreviations
- AD
Axial diffusivity
- BNI
Barrow Neurological Institute
- Cl
Linear anisotropy coefficient
- Cp
Planar anisotropy coefficient
- Cs
Spherical anisotropy coefficient
- DREZ
Dorsal root entry zone
- DTI
Diffuse tensor imaging
- FA
Fractional anisotropy
- GKRS
Gamma knife radiosurgery
- Gy
Gray
- MRI
Magnetic resonance imaging
- SRS
Stereotactic radiosurgery
- TN
Trigeminal neuralgia
- RD
Radial diffusivities
Notes
Compliance with ethical standards
Conflict of interest
The authors declare that they have no conflict of interest.
Ethical approval
All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. For this type of study formal consent is not required.
References
- 1.Alexander AL, Hasan K, Kindlmann G, Parker DL, Tsuruda JS (2000) A geometric analysis of diffusion tensor measurements of the human brain. Magn Reson Med: Off J Soc Magn Reson Med/Soc Magn Reson Med 44:283–291CrossRefGoogle Scholar
- 2.Alexander AL, Lee JE, Lazar M, Field AS (2007) Diffusion tensor imaging of the brain. Neurotherapeutics 4:316–329. https://doi.org/10.1016/j.nurt.2007.05.011 CrossRefPubMedPubMedCentralGoogle Scholar
- 3.Amutio Gutierrez S, Soto-Gonzalez M (2014) Effectiveness of gamma knife treatment in patients affected by idiopathic recurrent trigeminal neuralgia. Neurologia. https://doi.org/10.1016/j.nrl.2014.02.006
- 4.Antonini G, Di Pasquale A, Cruccu G, Truini A, Morino S, Saltelli G, Romano A, Trasimeni G, Vanacore N, Bozzao A (2014) Magnetic resonance imaging contribution for diagnosing symptomatic neurovascular contact in classical trigeminal neuralgia: a blinded case-control study and meta-analysis. Pain 155:1464–1471. https://doi.org/10.1016/j.pain.2014.04.020 CrossRefPubMedGoogle Scholar
- 5.Baschnagel AM, Cartier JL, Dreyer J, Chen PY, Pieper DR, Olson RE, Krauss DJ, Maitz AH, Grills IS (2014) Trigeminal neuralgia pain relief after gamma knife stereotactic radiosurgery. Clin Neurol Neurosurg 117:107–111. https://doi.org/10.1016/j.clineuro.2013.12.003 CrossRefPubMedGoogle Scholar
- 6.Basser PJ (1995) Inferring microstructural features and the physiological state of tissues from diffusion-weighted images. NMR Biomed 8:333–344CrossRefPubMedGoogle Scholar
- 7.Basser PJ, Pierpaoli C (2011) Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. 1996. J Magn Reson 213:560–570. https://doi.org/10.1016/j.jmr.2011.09.022 CrossRefPubMedGoogle Scholar
- 8.Beaulieu C (2002) The basis of anisotropic water diffusion in the nervous system—a technical review. NMR Biomed 15:435–455. https://doi.org/10.1002/nbm.782 CrossRefPubMedGoogle Scholar
- 9.Bello L, Gambini A, Castellano A, Carrabba G, Acerbi F, Fava E, Giussani C, Cadioli M, Blasi V, Casarotti A, Papagno C, Gupta AK, Gaini S, Scotti G, Falini A (2008) Motor and language DTI Fiber Tracking combined with intraoperative subcortical mapping for surgical removal of gliomas. NeuroImage 39:369–382. https://doi.org/10.1016/j.neuroimage.2007.08.031 CrossRefPubMedGoogle Scholar
- 10.Berman JI, Berger MS, Mukherjee P, Henry RG (2004) Diffusion-tensor imaging-guided tracking of fibers of the pyramidal tract combined with intraoperative cortical stimulation mapping in patients with gliomas. J Neurosurg 101:66–72. https://doi.org/10.3171/jns.2004.101.1.0066 CrossRefPubMedGoogle Scholar
- 11.Boorman ED, O'Shea J, Sebastian C, Rushworth MF, Johansen-Berg H (2007) Individual differences in white-matter microstructure reflect variation in functional connectivity during choice. Curr Biol: CB 17:1426–1431. https://doi.org/10.1016/j.cub.2007.07.040 CrossRefPubMedGoogle Scholar
- 12.Brennan FH, Cowin GJ, Kurniawan ND, Ruitenberg MJ (2013) Longitudinal assessment of white matter pathology in the injured mouse spinal cord through ultra-high field (16.4 T) in vivo diffusion tensor imaging. NeuroImage 82:574–585. https://doi.org/10.1016/j.neuroimage.2013.06.019 CrossRefPubMedGoogle Scholar
- 13.Burchiel KJ (1980) Abnormal impulse generation in focally demyelinated trigeminal roots. J Neurosurg 53:674–683. https://doi.org/10.3171/jns.1980.53.5.0674 CrossRefPubMedGoogle Scholar
- 14.Calvin WH, Loeser JD, Howe JF (1977) A neurophysiological theory for the pain mechanism of tic douloureux. Pain 3:147–154CrossRefPubMedGoogle Scholar
- 15.Chao YP, Cho KH, Yeh CH, Chou KH, Chen JH, Lin CP (2009) Probabilistic topography of human corpus callosum using cytoarchitectural parcellation and high angular resolution diffusion imaging tractography. Hum Brain Mapp 30:3172–3187. https://doi.org/10.1002/hbm.20739 CrossRefPubMedGoogle Scholar
- 16.Chen DQ, DeSouza DD, Hayes DJ, Davis KD, O'Connor P, Hodaie M (2016) Diffusivity signatures characterize trigeminal neuralgia associated with multiple sclerosis. Mult Scler 22:51–63. https://doi.org/10.1177/1352458515579440 CrossRefPubMedGoogle Scholar
- 17.Ciccarelli O, Catani M, Johansen-Berg H, Clark C, Thompson A (2008) Diffusion-based tractography in neurological disorders: concepts, applications, and future developments. Lancet Neurol 7:715–727. https://doi.org/10.1016/S1474-4422(08)70163-7 CrossRefPubMedGoogle Scholar
- 18.Clark CA, Barrick TR, Murphy MM, Bell BA (2003) White matter fiber tracking in patients with space-occupying lesions of the brain: a new technique for neurosurgical planning? NeuroImage 20:1601–1608CrossRefPubMedGoogle Scholar
- 19.DeSouza DD, Hodaie M, Davis KD (2014) Abnormal trigeminal nerve microstructure and brain white matter in idiopathic trigeminal neuralgia. Pain 155:37–44. https://doi.org/10.1016/j.pain.2013.08.029 CrossRefPubMedGoogle Scholar
- 20.Giorgio A, Watkins KE, Chadwick M, James S, Winmill L, Douaud G, De Stefano N, Matthews PM, Smith SM, Johansen-Berg H, James AC (2010) Longitudinal changes in grey and white matter during adolescence. NeuroImage 49:94–103. https://doi.org/10.1016/j.neuroimage.2009.08.003 CrossRefPubMedGoogle Scholar
- 21.Herweh C, Kress B, Rasche D, Tronnier V, Troger J, Sartor K, Stippich C (2007) Loss of anisotropy in trigeminal neuralgia revealed by diffusion tensor imaging. Neurology 68:776–778. https://doi.org/10.1212/01.wnl.0000256340.16766.1d CrossRefPubMedGoogle Scholar
- 22.Hodaie M, Quan J, Chen DQ (2010) In vivo visualization of cranial nerve pathways in humans using diffusion-based tractography. Neurosurgery 66:788–795; discussion 795-786. https://doi.org/10.1227/01.NEU.0000367613.09324.DA CrossRefPubMedGoogle Scholar
- 23.Hung PS, Chen DQ, Davis KD, Zhong J, Hodaie M (2017) Predicting pain relief: use of pre-surgical trigeminal nerve diffusion metrics in trigeminal neuralgia. Neuroimage Clin 15:710–718. https://doi.org/10.1016/j.nicl.2017.06.017 CrossRefPubMedPubMedCentralGoogle Scholar
- 24.Karam SD, Tai A, Wooster M, Rashid A, Chen R, Baig N, Jay A, Harter KW, Randolph-Jackson P, Omogbehin A, Aulisi EF, Jacobson J (2014) Trigeminal neuralgia treatment outcomes following Gamma Knife radiosurgery with a minimum 3-year follow-up. J Radiat Oncol 3:125–130. https://doi.org/10.1007/s13566-013-0134-3 CrossRefPubMedGoogle Scholar
- 25.Kondziolka D, Lacomis D, Niranjan A, Mori Y, Maesawa S, Fellows W, Lunsford LD (2000) Histological effects of trigeminal nerve radiosurgery in a primate model: implications for trigeminal neuralgia radiosurgery. Neurosurgery 46:971–976 discussion 976-977PubMedGoogle Scholar
- 26.Kondziolka D, Zorro O, Lobato-Polo J, Kano H, Flannery TJ, Flickinger JC, Lunsford LD (2010) Gamma Knife stereotactic radiosurgery for idiopathic trigeminal neuralgia. J Neurosurg 112:758–765. https://doi.org/10.3171/2009.7.JNS09694 CrossRefPubMedGoogle Scholar
- 27.Leal PR, Roch JA, Hermier M, Souza MA, Cristino-Filho G, Sindou M (2011) Structural abnormalities of the trigeminal root revealed by diffusion tensor imaging in patients with trigeminal neuralgia caused by neurovascular compression: a prospective, double-blind, controlled study. Pain 152:2357–2364. https://doi.org/10.1016/j.pain.2011.06.029 CrossRefPubMedGoogle Scholar
- 28.Love S, Hilton DA, Coakham HB (1998) Central demyelination of the Vth nerve root in trigeminal neuralgia associated with vascular compression. Brain Pathol 8:1–11 discussion 11-12CrossRefPubMedGoogle Scholar
- 29.Lucas JT Jr, Nida AM, Isom S, Marshall K, Bourland JD, Laxton AW, Tatter SB, Chan MD (2014) Predictive nomogram for the durability of pain relief from gamma knife radiation surgery in the treatment of trigeminal neuralgia. Int J Radiat Oncol Biol Phys 89:120–126. https://doi.org/10.1016/j.ijrobp.2014.01.023 CrossRefPubMedPubMedCentralGoogle Scholar
- 30.Lutz J, Thon N, Stahl R, Lummel N, Tonn JC, Linn J, Mehrkens JH (2016) Microstructural alterations in trigeminal neuralgia determined by diffusion tensor imaging are independent of symptom duration, severity, and type of neurovascular conflict. J Neurosurg 124:823–830. https://doi.org/10.3171/2015.2.JNS142587 CrossRefPubMedGoogle Scholar
- 31.Maarbjerg S, Di Stefano G, Bendtsen L, Cruccu G (2017) Trigeminal neuralgia—diagnosis and treatment. Cephalalgia 37:648–657. https://doi.org/10.1177/0333102416687280 CrossRefPubMedGoogle Scholar
- 32.Maarbjerg S, Wolfram F, Gozalov A, Olesen J, Bendtsen L (2015) Significance of neurovascular contact in classical trigeminal neuralgia. Brain J Neurol 138:311–319. https://doi.org/10.1093/brain/awu349 CrossRefGoogle Scholar
- 33.Masur H, Papke K, Bongartz G, Vollbrecht K (1995) The significance of three-dimensional MR-defined neurovascular compression for the pathogenesis of trigeminal neuralgia. J Neurol 242:93–98CrossRefPubMedGoogle Scholar
- 34.Moayedi M, Weissman-Fogel I, Salomons TV, Crawley AP, Goldberg MB, Freeman BV, Tenenbaum HC, Davis KD (2012) White matter brain and trigeminal nerve abnormalities in temporomandibular disorder. Pain 153:1467–1477. https://doi.org/10.1016/j.pain.2012.04.003 CrossRefPubMedGoogle Scholar
- 35.Mousavi SH, Niranjan A, Huang MJ, Laghari FJ, Shin SS, Mindlin JL, Flickinger JC, Lunsford LD (2015) Early radiosurgery provides superior pain relief for trigeminal neuralgia patients. Neurology 85:2159–2165. https://doi.org/10.1212/WNL.0000000000002216 CrossRefPubMedGoogle Scholar
- 36.Nimsky C, Ganslandt O, Merhof D, Sorensen AG, Fahlbusch R (2006) Intraoperative visualization of the pyramidal tract by diffusion-tensor-imaging-based fiber tracking. NeuroImage 30:1219–1229. https://doi.org/10.1016/j.neuroimage.2005.11.001 CrossRefPubMedGoogle Scholar
- 37.Nimsky C, Grummich P, Sorensen AG, Fahlbusch R, Ganslandt O (2005) Visualization of the pyramidal tract in glioma surgery by integrating diffusion tensor imaging in functional neuronavigation. Zentralbl Neurochir 66:133–141. https://doi.org/10.1055/s-2005-836606 CrossRefPubMedGoogle Scholar
- 38.Obermann M, Yoon MS, Ese D, Maschke M, Kaube H, Diener HC, Katsarava Z (2007) Impaired trigeminal nociceptive processing in patients with trigeminal neuralgia. Neurology 69:835–841. https://doi.org/10.1212/01.wnl.0000269670.30045.6b CrossRefPubMedGoogle Scholar
- 39.Pollock BE, Phuong LK, Foote RL, Stafford SL, Gorman DA (2001) High-dose trigeminal neuralgia radiosurgery associated with increased risk of trigeminal nerve dysfunction. Neurosurgery 49:58–62 discussion 62-54PubMedGoogle Scholar
- 40.Pollock BE, Phuong LK, Gorman DA, Foote RL, Stafford SL (2002) Stereotactic radiosurgery for idiopathic trigeminal neuralgia. J Neurosurg 97:347–353. https://doi.org/10.3171/jns.2002.97.2.0347 CrossRefPubMedGoogle Scholar
- 41.Rappaport ZH, Govrin-Lippmann R, Devor M (1997) An electron-microscopic analysis of biopsy samples of the trigeminal root taken during microvascular decompressive surgery. Stereotact Funct Neurosurg 68:182–186CrossRefPubMedGoogle Scholar
- 42.Regis J, Tuleasca C, Resseguier N, Carron R, Donnet A, Gaudart J, Levivier M (2016) Long-term safety and efficacy of gamma knife surgery in classical trigeminal neuralgia: a 497-patient historical cohort study. J Neurosurg 124:1079–1087. https://doi.org/10.3171/2015.2.JNS142144 CrossRefPubMedGoogle Scholar
- 43.Sheehan J, Pan HC, Stroila M, Steiner L (2005) Gamma knife surgery for trigeminal neuralgia: outcomes and prognostic factors. J Neurosurg 102:434–441. https://doi.org/10.3171/jns.2005.102.3.0434 CrossRefPubMedGoogle Scholar
- 44.Song SK, Sun SW, Ju WK, Lin SJ, Cross AH, Neufeld AH (2003) Diffusion tensor imaging detects and differentiates axon and myelin degeneration in mouse optic nerve after retinal ischemia. NeuroImage 20:1714–1722CrossRefPubMedGoogle Scholar
- 45.Song SK, Yoshino J, Le TQ, Lin SJ, Sun SW, Cross AH, Armstrong RC (2005) Demyelination increases radial diffusivity in corpus callosum of mouse brain. NeuroImage 26:132–140. https://doi.org/10.1016/j.neuroimage.2005.01.028 CrossRefPubMedGoogle Scholar
- 46.Tuleasca C, Carron R, Resseguier N, Donnet A, Roussel P, Gaudart J, Levivier M, Regis J (2015) Decreased probability of initial pain cessation in classic trigeminal neuralgia treated with gamma knife surgery in case of previous microvascular decompression: a prospective series of 45 patients with >1 year of follow-up. Neurosurgery 77:87–94; discussion 94-85. https://doi.org/10.1227/NEU.0000000000000739 CrossRefPubMedGoogle Scholar
- 47.Wang SKS, Melhem ER (2014) Diffusion tensor imaging: introduction and applications to brain tumor characterization.. Functional brain tumor imaging. Springer, New York. https://doi.org/10.1007/978-1-4419-5858-7_2 Google Scholar
- 48.Weller M, Marshall K, Lovato JF, Bourland JD, deGuzman AF, Munley MT, Shaw EG, Tatter SB, Chan MD (2014) Single-institution retrospective series of gamma knife radiosurgery in the treatment of multiple sclerosis-related trigeminal neuralgia: factors that predict efficacy. Stereotact Funct Neurosurg 92:53–58. https://doi.org/10.1159/000354815 CrossRefPubMedGoogle Scholar
- 49.Wolf A, Tyburczy A, Ye JC, Fatterpekar G, Silverman JS, Kondziolka D (2017) The relationship of dose to nerve volume in predicting pain recurrence after stereotactic radiosurgery in trigeminal neuralgia. J Neurosurg:1–6. https://doi.org/10.3171/2016.12.JNS161862
- 50.Xu Z, Schlesinger D, Moldovan K, Przybylowski C, Sun X, Lee CC, Yen CP, Sheehan J (2014) Impact of target location on the response of trigeminal neuralgia to stereotactic radiosurgery. J Neurosurg 120:716–724. https://doi.org/10.3171/2013.10.JNS131596 CrossRefPubMedGoogle Scholar