Abbasi S, Tajeripour F (2017) Detection of brain tumor in 3D MRI images using local binary patterns and histogram orientation gradient. Neurocomputing 219:526–535
Article
Google Scholar
Akbari H, Macyszyn L, Da X, Bilello M, Wolf RL, Martinez-Lage M, Biros G, Alonso-Basanta M, O’Rourke DM, Davatzikos C (2016) Imaging surrogates of infiltration obtained via multiparametric imaging pattern analysis predict subsequent location of recurrence of glioblastoma. Neurosurgery 78:572–580. https://doi.org/10.1227/neu.0000000000001202
Article
PubMed
PubMed Central
Google Scholar
Akbari H, Macyszyn L, Da X, Wolf RL, Bilello M, Verma R, O’Rourke DM, Davatzikos C (2014) Pattern analysis of dynamic susceptibility contrast-enhanced MR imaging demonstrates peritumoral tissue heterogeneity. Radiology 273:502–510. https://doi.org/10.1148/radiol.14132458
Article
PubMed
PubMed Central
Google Scholar
Antoni ST, Rinast J, Ma X, Schupp S, Schlaefer A (2016) Online model checking for monitoring surrogate-based respiratory motion tracking in radiation therapy. Int J Comput Assist Radiol Surg 11(11):2085-2096. https://doi.org/10.1007/s11548-016-1423-2
Arle JE, Perrine K, Devinsky O, Doyle WK (1999) Neural network analysis of preoperative variables and outcome in epilepsy surgery. J Neurosurg 90:998–1004. https://doi.org/10.3171/jns.1999.90.6.0998
CAS
Article
PubMed
Google Scholar
Asadi H, Kok HK, Looby S, Brennan P, O’Hare A, Thornton J (2016) Outcomes and complications after endovascular treatment of brain Arteriovenous malformations: a prognostication attempt using artificial intelligence. World Neurosurg 96:562–569.e561
Article
PubMed
Google Scholar
Azami ME, Hammers A, Jung J, Costes N, Bouet R, Lartizien C (2016) Detection of lesions underlying intractable epilepsy on T1-weighted MRI as an outlier detection problem. PLoS One 11:e0161498
Article
PubMed
PubMed Central
Google Scholar
Azimi P, Benzel EC, Shahzadi S, Azhari S, Mohammadi HR (2016) The prediction of successful surgery outcome in lumbar disc herniation based on artificial neural networks. J Neurosurg Sci 60:173–177
PubMed
Google Scholar
Azimi P, Benzel EC, Shahzadi S, Azhari S, Mohammadi HR (2014) Use of artificial neural networks to predict surgical satisfaction in patients with lumbar spinal canal stenosis: clinical article. J Neurosurg Spine 20:300–305. https://doi.org/10.3171/2013.12.spine13674
Article
PubMed
Google Scholar
Azimi P, Mohammadi HR (2014) Predicting endoscopic third ventriculostomy success in childhood hydrocephalus: an artificial neural network analysis. J Neurosurg Pediatr 13:426–432. https://doi.org/10.3171/2013.12.peds13423
Article
PubMed
Google Scholar
Bibault JE, Giraud P, Burgun A (2016) Big data and machine learning in radiation oncology: state of the art and future prospects. Cancer Lett 382:110–117. https://doi.org/10.1016/j.canlet.2016.05.033
CAS
Article
PubMed
Google Scholar
Campillo-Gimenez B, Garcelon N, Jarno P, Chapplain JM, Cuggia M (2013) Full-text automated detection of surgical site infections secondary to neurosurgery in Rennes, France. Stud Health Technol Inform 192:572–575
PubMed
Google Scholar
Canchi T, Kumar SD, Ng EY, Narayanan S (2015) A review of computational methods to predict the risk of rupture of abdominal aortic aneurysms. Biomed Res Int 2015:861627. https://doi.org/10.1155/2015/861627
Article
PubMed
PubMed Central
Google Scholar
Celtikci E (2017) A systematic review on machine learning in neurosurgery: the future of decision making in patient care. Turk Neurosurg. https://doi.org/10.5137/1019-5149.JTN.20059-17.1
Clarke LP, Velthuizen RP, Clark M, Gaviria J, Hall L, Goldgof D, Murtagh R, Phuphanich S, Brem S (1998) MRI measurement of brain tumor response: comparison of visual metric and automatic segmentation. Magn Reson Imaging 16:271–279
CAS
Article
PubMed
Google Scholar
De Momi E, Ferrigno G (2010) Robotic and artificial intelligence for keyhole neurosurgery: the ROBOCAST project, a multi-modal autonomous path planner. Proc Inst Mech Eng H J Eng Med 224:715–727
Article
Google Scholar
Deo RC (2015) Machine learning in medicine. Circulation 132:1920–1930. https://doi.org/10.1161/CIRCULATIONAHA.115.001593
Article
PubMed
Google Scholar
Di Ieva A, Boukadoum M, Lahmiri S, Cusimano MD (2015) Computational analyses of arteriovenous malformations in neuroimaging. J Neuroimaging 25:354–360. https://doi.org/10.1111/jon.12200
Article
PubMed
Google Scholar
Dolz J, Betrouni N, Quidet M, Kharroubi D, Leroy HA, Reyns N, Massoptier L, Vermandel M (2016) Stacking denoising auto-encoders in a deep network to segment the brainstem on MRI in brain cancer patients: a clinical study. Comput Med Imaging Graph 52:8–18. https://doi.org/10.1016/j.compmedimag.2016.03.003
Article
PubMed
Google Scholar
Dumont TM, Rughani AI, Tranmer BI (2011) Prediction of symptomatic cerebral vasospasm after aneurysmal subarachnoid hemorrhage with an artificial neural network: feasibility and comparison with logistic regression models. World Neurosurg 75:57–63; discussion 25-58. https://doi.org/10.1016/j.wneu.2010.07.007
Article
PubMed
Google Scholar
Eberlin LS, Norton I, Dill AL, Golby AJ, Ligon KL, Santagata S, Graham Cooks R, Agar NYR (2012) Classifying human brain tumors by lipid imaging with mass spectrometry. Cancer Res 72:645–654
CAS
Article
PubMed
Google Scholar
Emblem KE, Nedregaard B, Hald JK, Nome T, Due-Tonnessen P, Bjornerud A (2009) Automatic glioma characterization from dynamic susceptibility contrast imaging: brain tumor segmentation using knowledge-based fuzzy clustering. J Magn Reson Imaging 30:1–10. https://doi.org/10.1002/jmri.21815
Article
PubMed
Google Scholar
Emblem KE, Pinho MC, Zollner FG, Due-Tonnessen P, Hald JK, Schad LR, Meling TR, Rapalino O, Bjornerud A (2015) A generic support vector machine model for preoperative glioma survival associations. Radiology 275:228–234. https://doi.org/10.1148/radiol.14140770
Article
PubMed
Google Scholar
Fan B, Li HX, Hu Y (2016) An intelligent decision system for intraoperative somatosensory evoked potential monitoring. IEEE Trans Neural Syst Rehabil Eng 24:300–307. https://doi.org/10.1109/tnsre.2015.2477557
Article
PubMed
Google Scholar
Focke NK, Yogarajah M, Symms MR, Gruber O, Paulus W, Duncan JS (2012) Automated MR image classification in temporal lobe epilepsy. NeuroImage 59:356–362. https://doi.org/10.1016/j.neuroimage.2011.07.068
Article
PubMed
Google Scholar
Foroni R, Giri MG, Gerosa MA, Nicolato A, Piovan E, Zampieri PG, Pasqualin A, Bortolazzi E, Pasoli A, Marchini G et al (1995) A euristic approach to the volume reconstruction of arteriovenous malformations from biplane angiography. Stereotact Funct Neurosurg 64:134–146
Article
PubMed
Google Scholar
Fusco R, Sansone M, Filice S, Carone G, Amato DM, Sansone C, Petrillo A (2016) Pattern recognition approaches for breast cancer DCE-MRI classification: a systematic review. J Med Biol Eng 36:449–459. https://doi.org/10.1007/s40846-016-0163-7
Article
PubMed
PubMed Central
Google Scholar
Gazit T, Andelman F, Glikmann-Johnston Y, Gonen T, Solski A, Shapira-Lichter I, Ovadia M, Kipervasser S, Neufeld MY, Fried I et al (2016) Probabilistic machine learning for the evaluation of presurgical language dominance. J Neurosurg 125:1–13. https://doi.org/10.3171/2015.7.jns142568
Article
Google Scholar
Ghahramani Z (2015) Probabilistic machine learning and artificial intelligence. Nature 521:452–459. https://doi.org/10.1038/nature14541
CAS
Article
PubMed
Google Scholar
Grigsby J, Kramer RE, Schneiders JL, Gates JR, Brewster Smith W (1998) Predicting outcome of anterior temporal lobectomy using simulated neural networks. Epilepsia 39:61–66
CAS
Article
PubMed
Google Scholar
Grossman RL, Heath AP, Ferretti V, Varmus HE, Lowy DR, Kibbe WA, Staudt LM (2016) Toward a shared vision for cancer genomic data. N Engl J Med 375:1109–1112. https://doi.org/10.1056/NEJMp1607591
Article
PubMed
Google Scholar
Hamzei-Sichani F, Sperling M, Fuertinger S, Sharan A, Simonyan K (2016) Cortical networks high frequency EEG activity patterns in patients undergoing epilepsy surgery. J Neurosurg 124:A1184
Google Scholar
Hastie T, Tibshirani R, Friedman JH (2009) The elements of statistical learning: data mining, inference, and prediction. Springer, New York
Book
Google Scholar
Havaei M, Davy A, Warde-Farley D, Biard A, Courville A, Bengio Y, Pal C, Jodoin PM, Larochelle H (2016) Brain tumor segmentation with deep neural networks. Med Image Anal 35:18–31. https://doi.org/10.1016/j.media.2016.05.004
Article
PubMed
Google Scholar
Johnson AE, Ghassemi MM, Nemati S, Niehaus KE, Clifton DA, Clifford GD (2016) Machine learning and decision support in critical care. Proc IEEE Inst Electr Electron Eng 104:444–466. https://doi.org/10.1109/JPROC.2015.2501978
Article
PubMed
PubMed Central
Google Scholar
Jones TL, Byrnes TJ, Yang G, Howe FA, Bell BA, Barrick TR (2015) Brain tumor classification using the diffusion tensor image segmentation (D-SEG) technique. Neuro-Oncology 17:466–476. https://doi.org/10.1093/neuonc/nou159
CAS
PubMed
Google Scholar
Jordan MI, Mitchell TM (2015) Machine learning: trends, perspectives, and prospects. Science 349:255–260. https://doi.org/10.1126/science.aaa8415
CAS
Article
PubMed
Google Scholar
Juan-Albarracín J, Fuster-Garcia E, Manjón JV, Robles M, Aparici F, Martí-Bonmatí L, García-Gómez JM (2015) Automated glioblastoma segmentation based on a multiparametric structured unsupervised classification. PLoS One 10:e0125143
Article
PubMed
PubMed Central
Google Scholar
Kalkanis SN, Kast RE, Rosenblum ML, Mikkelsen T, Yurgelevic SM, Nelson KM, Raghunathan A, Poisson LM, Auner GW (2014) Raman spectroscopy to distinguish grey matter, necrosis, and glioblastoma multiforme in frozen tissue sections. J Neurooncol 116:477–485
CAS
Article
PubMed
Google Scholar
Kanevsky J, Corban J, Gaster R, Kanevsky A, Lin S, Gilardino M (2016) Big data and machine learning in plastic surgery: a new frontier in surgical innovation. Plast Reconstr Surg 137:890e–897e. https://doi.org/10.1097/PRS.0000000000002088
CAS
Article
PubMed
Google Scholar
Kassahun Y, Yu B, Tibebu AT, Stoyanov D, Giannarou S, Metzen JH, Vander Poorten E (2016) Surgical robotics beyond enhanced dexterity instrumentation: a survey of machine learning techniques and their role in intelligent and autonomous surgical actions. Int J Comput Assist Radiol Surg 11:553–568. https://doi.org/10.1007/s11548-015-1305-z
Article
PubMed
Google Scholar
Keihaninejad S, Heckemann RA, Gousias IS, Hajnal JV, Duncan JS, Aljabar P, Rueckert D, Hammers A (2012) Classification and lateralization of temporal lobe epilepsies with and without hippocampal atrophy based on whole-brain automatic MRI segmentation. PLoS One 7:e33096. https://doi.org/10.1371/journal.pone.0033096
CAS
Article
PubMed
PubMed Central
Google Scholar
Kenngott HG, Wagner M, Nickel F, Wekerle AL, Preukschas A, Apitz M, Schulte T, Rempel R, Mietkowski P, Wagner F et al (2015) Computer-assisted abdominal surgery: new technologies. Langenbecks Arch Surg 400:273–281. https://doi.org/10.1007/s00423-015-1289-8
CAS
Article
PubMed
Google Scholar
Kohli M, Prevedello LM, Filice RW, Geis JR (2017) Implementing machine learning in radiology practice and research. AJR Am J Roentgenol 208:754-760. https://doi.org/10.2214/AJR.16.17224
Article
PubMed
Google Scholar
Kourou K, Exarchos TP, Exarchos KP, Karamouzis MV, Fotiadis DI (2015) Machine learning applications in cancer prognosis and prediction. Comput Struct Biotechnol J 13:8–17. https://doi.org/10.1016/j.csbj.2014.11.005
CAS
Article
PubMed
Google Scholar
Lin E, Lane HY (2017) Machine learning and systems genomics approaches for multi-omics data. Biomark Res 5:2. https://doi.org/10.1186/s40364-017-0082-y
Article
PubMed
PubMed Central
Google Scholar
Madani Tonekaboni SA, Soltan Ghoraie L, Manem VS, Haibe-Kains B (2016) Predictive approaches for drug combination discovery in cancer. Brief Bioinform. https://doi.org/10.1093/bib/bbw104
Mariak Z, Swiercz M, Krejza J, Lewko J, Lyson T (2000) Intracranial pressure processing with artificial neural networks: classification of signal properties. Acta Neurochir 142:407–411 discussion 411-402
CAS
Article
PubMed
Google Scholar
Mitchell TJ, Hacker CD, Breshears JD, Szrama NP, Sharma M, Bundy DT, Pahwa M, Corbetta M, Snyder AZ, Shimony JS et al (2013) A novel data-driven approach to preoperative mapping of functional cortex using resting-state functional magnetic resonance imaging. Neurosurgery 73:969–982; discussion 982-963. https://doi.org/10.1227/neu.0000000000000141
Article
PubMed
PubMed Central
Google Scholar
Mitchell TM (1997) Machine learning. McGraw-Hill Science, New York
Google Scholar
Moghim N, Corne DW (2014) Predicting epileptic seizures in advance. PLoS One 9:e99334. https://doi.org/10.1371/journal.pone.0099334
Article
PubMed
PubMed Central
Google Scholar
Nowinski WL, Belov D, Benabid AL (2003) An algorithm for rapid calculation of a probabilistic functional atlas of subcortical structures from electrophysiological data collected during functional neurosurgery procedures. NeuroImage 18:143–155
Article
PubMed
Google Scholar
Nucci CG, De Bonis P, Mangiola A, Santini P, Sciandrone M, Risi A, Anile C (2016) Intracranial pressure wave morphological classification: automated analysis and clinical validation. Acta Neurochir 158:581–588; discussion 588. https://doi.org/10.1007/s00701-015-2672-5
Article
PubMed
Google Scholar
Obermeyer Z, Emanuel EJ (2016) Predicting the future—big data, machine learning, and clinical medicine. N Engl J Med 375:1216–1219. https://doi.org/10.1056/NEJMp1606181
Article
PubMed
PubMed Central
Google Scholar
Orringer D, Ji M, Lewis S, Camelo-Piragua S, Johnson T, Sagher O, Wang A, Maher C, Heth J, Xie X (2015) Visualizing brain tumor infiltration with stimulated Raman scattering microscopy. J Neurosurg 123:A523
Google Scholar
Saha M, Mukherjee R, Chakraborty C (2016) Computer-aided diagnosis of breast cancer using cytological images: a systematic review. Tissue Cell 48:461–474. https://doi.org/10.1016/j.tice.2016.07.006
Article
PubMed
Google Scholar
Schmidt B, Bocklisch SF, Pässler M, Czosnyka M, Schwarze JJ, Klingelhöfer J (2005) Fuzzy pattern classification of hemodynamic data can be used to determine noninvasive intracranial pressure. Acta Neurochir Suppl 95:345–349
CAS
Article
PubMed
Google Scholar
Senders JT, Arnaout O, Karhade AV, Dasenbrock HH, Gormley WB, Broekman ML, Smith TR (2017) Natural and artificial intelligence in neurosurgery: a systematic review. Neurosurgery. https://doi.org/10.1093/neuros/nyx384
Senders JT, Staples PC, Karhade AV, Zaki MM, Gormley WB, Broekman MLD, Smith TR, Arnaout O (2017) Machine learning and neurosurgical outcome prediction: a systematic review. World Neurosurg. https://doi.org/10.1016/j.wneu.2017.09.149
Shamim MS, Enam SA, Qidwai U (2009) Fuzzy logic in neurosurgery: predicting poor outcomes after lumbar disk surgery in 501 consecutive patients. Surg Neurol 72:565–572; discussion 572. https://doi.org/10.1016/j.surneu.2009.07.012
Article
PubMed
Google Scholar
Shamir R, Duchin Y, Kim JJK, Marmor O, Bergman H, Vitek JL, Sapiro G, Bick AS, Eliyahu R, Eitan R et al (2016) MER validation of a new targeting approach for STN-DBS surgery based on machine-learning and 7T-MRI database (10661). Neuromodulation 19:e67
Google Scholar
Shi HY, Hwang SL, Lee KT, Lin CL (2013) In-hospital mortality after traumatic brain injury surgery: a nationwide population-based comparison of mortality predictors used in artificial neural network and logistic regression models. J Neurosurg 118:746–752. https://doi.org/10.3171/2013.1.jns121130
Article
PubMed
Google Scholar
Shih JJ, Krusienski DJ (2009) Electrocorticography in a brain-computer interface (BCI) paradigm. Epilepsia 50:327
Google Scholar
Skrobala A (2012) Beam orientation in stereotactic radiosurgery using artificial neural network. Radiother Oncol 103:S220
Article
Google Scholar
Swiercz M, Mariak Z, Krejza J, Lewko J, Szydlik P (2000) Intracranial pressure processing with artificial neural networks: prediction of ICP trends. Acta Neurochir 142:401–406
CAS
Article
PubMed
Google Scholar
Taghva A (2010) An automated navigation system for deep brain stimulator placement using hidden Markov models. Neurosurgery 66:108–117; discussion 117. https://doi.org/10.1227/01.NEU.0000365369.48392.E8
Article
PubMed
Google Scholar
Taghva A (2011) Hidden semi-Markov models in the computerized decoding of microelectrode recording data for deep brain stimulator placement. World Neurosurg 75:758–763.E754
Article
PubMed
Google Scholar
Wang J, You X, Wu W, Guillen MR, Cabrerizo M, Sullivan J, Donner E, Bjornson B, Gaillard WD, Adjouadi M (2014) Classification of fMRI patterns—a study of the language network segregation in pediatric localization related epilepsy. Hum Brain Mapp 35:1446–1460. https://doi.org/10.1002/hbm.22265
Article
PubMed
Google Scholar