Skip to main content

Advertisement

Log in

Neuronavigation-assisted trajectory planning for deep brain biopsy with susceptibility-weighted imaging

  • Clinical Article - Neurosurgical Techniques
  • Published:
Acta Neurochirurgica Aims and scope Submit manuscript

Abstract

Background

Susceptibility-weighted imaging (SWI) exploits susceptibility differences between tissues to enhance contrast in magnetic resonance imaging to enable the visualization of small blood vessels that are difficult to detect by other contrast agents. This study explored the value of SWI-based planning for neuronavigation-guided deep brain biopsies to reduce the incidence of post-surgical complications.

Methods

The cohort of 84 patients was divided into 41 biopsies performed aided by SWI (SWI group) and 43 biopsies based on conventional T1w-Gd-based imaging (T1w-Gd group). Biopsy targets were determined using magnetic resonance spectroscopy (MRS) before the operation, and the safest trajectory was selected based on preoperative images of blood vessels.

Results

Within 24 h of surgery, there was no radiographically identified bleeding, no blood extravasation and no clinical intracranial hypertension in the SWI group. Only one patient (2.5 %) with basal ganglia lymphoma developed transient hemiparesis after biopsy, who later recovered after undergoing symptomatic treatment. Complication rates in the SWI group were lower than in the T1w-Gd group, where a 7 % morbidity rate was encountered with one patient developing a permanent neurological deficit and two showing biopsy-associated hemorrhages. SWI imaging yielded a better visualization of subcortical vessels and deep-seated brain structures.

Conclusions

SWI-based imaging revealed significantly better visualization of small-caliber vasculature that was not detectable on conventional T1w-Gd imaging, minimizing damage to the brain and reducing postoperative complications. Furthermore, MRS can contribute significantly to target selection to improve the yield of image-guided biopsies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Akiyama Y, Miyata K, Harada K, Minamida Y, Nonaka T, Koyanagi I, Asai Y, Houkin K (2009) Susceptibility-weighted magnetic resonance imaging for the detection of cerebral microhemorrhage in patients with traumatic brain injury. Neurol Med Chir (Tokyo) 49(3):97–99

    Article  Google Scholar 

  2. Ayaz M, Boikov AS, Haacke EM, Kido DK, Kirsch WM (2010) Imaging cerebral microbleeds using susceptibility weighted imaging: one step toward detecting vascular dementia. J Magn Reson Imaging 31(1):142–148

    Article  PubMed  PubMed Central  Google Scholar 

  3. Barth M, Nöbauer-Huhmann IM, Reichenbach JR, Mlynárik V, Schöggl A, Matula C, Trattnig S (2003) High-resolution three-dimensional contrast-enhanced blood oxygenation level-dependent magnetic resonance venography of brain tumors at 3 Tesla: first clinical experience and comparison with 1.5 Tesla. Investig Radiol 38(7):409–414

    CAS  Google Scholar 

  4. Chernov MF, Muragaki Y, Ochiai T, Taira T, Ono Y, Usukura M, Maruyama T, Nakaya K, Nakamura R, Iseki H, Kubo O, Hori T, Takakura K (2009) Spectroscopy-supported frame-based image-guided stereotactic biopsy of parenchymal brain lesions: comparative evaluation of diagnostic yield and diagnostic accuracy. Clin Neurol Neurosurg 111(6):527–535

    Article  PubMed  Google Scholar 

  5. Essig M, Reichenbach JR, Schad LR, Schoenberg SO, Debus J, Kaiser WA (1999) High-resolution MR venography of cerebral arteriovenous malformations. Magn Reson Imaging 17(10):1417–1425

    Article  CAS  PubMed  Google Scholar 

  6. Folkman J (2002) Role of angiogenesis in tumor growth and metastasis. Semin Oncol 29(6 Suppl 16):15–18

    Article  CAS  PubMed  Google Scholar 

  7. Frati A, Pichierri A, Bastianello S, Raco A, Santoro A, Esposito V, Giangaspero F, Salvati M (2011) Frameless stereotactic cerebral biopsy: our experience in 296 cases. Stereotact Funct Neurosurg 89(4):234–245

    Article  PubMed  Google Scholar 

  8. Gilman S (1998) Imaging the brain: first of two parts. N Engl J Med 338(12):812–820

    Article  CAS  PubMed  Google Scholar 

  9. Hall WA (1998) The safety and efficacy of stereotactic biopsy for intracranial lesions. Cancer 82(9):1749–1755

    Article  CAS  PubMed  Google Scholar 

  10. Hall WA, Truwit CL (2005) 1.5 T: spectroscopy-supported brain biopsy. Neurosurg Clin N Am 16(1):165–172

    Article  PubMed  Google Scholar 

  11. Haacke EM, DelProposto ZS, Chaturvedi S, Sehgal V, Tenzer M, Neelavalli J, Kido D (2007) Imaging cerebral amyloid angiopathy with susceptibility-weighted imaging. AJNR Am J Neuroradiol 28(2):316–317

    CAS  PubMed  Google Scholar 

  12. Hori M, Ishigame K, Kabasawa H, Kumagai H, Ikenaga S, Shiraga N, Aoki S, Araki T (2010) Precontrast and postcontrast susceptibility-weighted imaging in the assessment of intracranial brain neoplasms at 1.5 T. Jpn J Radiol 28(4):299–304

    Article  PubMed  Google Scholar 

  13. Huang P, Chen CH, Lin WC, Lin RT, Khor GT, Liu CK (2012) Clinical applications of susceptibility weighted imaging in patients with major stroke. J Neurol 259(7):1426–1432

    Article  PubMed  Google Scholar 

  14. Kato Y, Sano H, Katada K, Ogura Y, Hayakawa M, Kanaoka N, Kanno T (1999) Application of three-dimensional CT angiography (3D-CTA) to cerebral aneurysms. Surg Neurol 52(2):113–121

    Article  CAS  PubMed  Google Scholar 

  15. Kidwell CS, Saver JL, Villablanca JP, Duckwiler G, Fredieu A, Gough K, Leary MC, Starkman S, Gobin YP, Jahan R, Vespa P, Liebeskind DS, Alger JR, Vinuela F (2002) Magnetic resonance imaging detection of microbleeds before thrombolysis: an emerging application. Stroke 33(1):95–98

    Article  PubMed  Google Scholar 

  16. Kim JE, Kim DG, Paek SH, Jung HW (2003) Stereotactic biopsy for intracranial lesions: reliability and its impact on the planning of treatment. Acta Neurochir (Wien) 145(7):547–554

    Article  CAS  Google Scholar 

  17. Ku HL, Chi NF (2011) Cerebral lobar microhemorrhages detection by high magnetic field susceptibility weighted image: a potential diagnostic neuroimage technique of Alzheimer’s disease. Med Hypotheses 76(6):840–842

    Article  PubMed  Google Scholar 

  18. Liu H, Hall WA, Truwit CL (2001) Neuronavigation in interventional MR imaging: Prospective stereotaxy. Neuroimaging Clin N Am 11(4):695–704

    CAS  PubMed  Google Scholar 

  19. Löbel U, Sedlacik H, Sabin ND, Kocak M, Broniscer A, Hillenbrand CM, Patay Z (2010) Three-dimensional susceptibility-weighted imaging and two-dimensional T2*-weighted gradient-echo imaging of intratumoral hemorrhages in pediatric diffuse intrinsic pontine glioma. Neuroradiology 52(12):1167–1177

    Article  PubMed  PubMed Central  Google Scholar 

  20. Mittal S, Wu Z, Neelavalli J, Haacke EM (2009) Susceptibility-weighted imaging: technical aspects and clinical application, part 2. AJNR Am J Neuroradiol 30(2):232–252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mohammed W, Xunning H, Haibin S, Jingzhi M (2013) Clinical applications of susceptibility-weighted imaging in detecting and grading intracranial gliomas: a review. Cancer Imaging 13(24):186–195

    Article  PubMed  PubMed Central  Google Scholar 

  22. Nishihara M, Takeda N, Harada T, Kidoguchi K, Tatsumi S, Tanaka K, Sasayama T, Kohmura E (2014) Diagnositc yield and morbidity by neuronavigation-guided frameless stereotactic biopsy using magnetic resonance imaging and by frame-based computed tomography-guided stereotactic biopsy. Surg Neurol Int 5(Suppl 8):S421–426

    Article  PubMed  PubMed Central  Google Scholar 

  23. Reichenbach JR, Jonetz-Mentzel L, Fitzek C, Haacke EM, Kido DK, Lee BC, Kaiser WA (2001) High-resolution blood oxygen-level dependent MR venography (HRBV): a new technique. Neuroradiology 43(5):364–369

    Article  CAS  PubMed  Google Scholar 

  24. Robinson RJ, Bhuta S (2011) Susceptibility-weighted imaging of the brain: current utility and potential applications. J Neuroimaging 21(4):e189–204

    Article  PubMed  Google Scholar 

  25. Rollin N, Guyotat J, Streichenberger N, Honnorat J, Tran Minh VA, Cotton F (2006) Clinical relevance of diffusion and perfusion magnetic resonance imaging in assessing intra-axial brain tumors. Neuroradiology 48(3):150–159

    Article  CAS  PubMed  Google Scholar 

  26. Schad LR (2001) Improved target volume characterization in stereotactic treatment planning of brain lesions by using high-resolution BOLD MR venography. NMR Biomed 14(7–8):478–483

    Article  CAS  PubMed  Google Scholar 

  27. Schott JM, Reiniger L, Thom M, Holton JL, Grieve J, Brandner S, Warren JD, Revesz T (2010) Brain biopsy in dementia: clinical indications and diagnostic approach. Acta Neuropathol 120(3):327–341

    Article  PubMed  Google Scholar 

  28. Sehgal V, Delproposto Z, Haddar D (2006) Susceptibility-weighted imaging to visualize blood products and improve tumor contrast in the study of brain masses. J Magn Reson Imaging 24(1):41–51

    Article  PubMed  Google Scholar 

  29. Soo TM, Bernstein M, Provias J, Tasker R, Lozano A, Guha A (1995) Failed stereotactic biopsy in a series of 518 cases. Stereotact Funct Neurosurg 64(4):183–196

    CAS  PubMed  Google Scholar 

  30. Stadlbauer A, Moser E, Gruber S, Nimsky C, Fahlbusch R, Ganslandt O (2004) Integration of biochemical images of a tumor into frameless stereotaxy achieved using a magnetic resonance imaging/magnetic resonance spectroscopy hybrid data set. J Neurosurg 101(2):287–294

    Article  PubMed  Google Scholar 

  31. Unsgaard G, Ommedal S, Muller T, Gronningsaeter A, Nagelhus Hernes TA (2002) Neuronavigation by intraoperative three-dimensional ultrasound: initial experience during brain tumor resection. Neurosurgery 50(4):804–812

    Article  PubMed  Google Scholar 

  32. Wucliffe ND, Choe J, Holshouser B, Oyoyo UE, Haacke EM, Kido DK (2004) Reliability in detection of hemorrhage in acute stroke by a new three-dimensional gradient recalled echo susceptibility-weighted imaging technique compared to computed tomography: a retrospective study. J Magn Reson Imaging 20(3):372–377

    Article  Google Scholar 

  33. Yamada S, Yamada SM, Nakaguchi H, Murakami M, Hoya K, Matsuno A, Yamazaki K, Ishida Y (2012) Tumefactive multiple sclerosis requiring emergent biopsy and histological investigation to confirm the diagnosis: a case report. J Med Case Rep 6:104

    Article  PubMed  PubMed Central  Google Scholar 

  34. Yoshida Y, Terae S, Kudo K, Tha KK, Imamura M, Miyasaka K (2006) Capillary telangiectasia of the brain stem diagnosed by susceptibility-weighted imaging. J Comput Assist Tomogr 30(6):980–982

    Article  PubMed  Google Scholar 

  35. Zulfiqar M, Dumrongpisutikul N, Intrapiromkul J, Yousem DM (2012) Detection of intratumoral calcification in oligodendrogliomas by susceptibility-weighted MR imaging. AJNR Am J Neuroradiol 33(5):858–864

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhitao Jing.

Ethics declarations

Funding

No funding was received for this research.

Conflict of interest

None.

Ethical approval

All procedures performed in the study involving human participants were in accordance with the ethical standards of the ethics committee of the First Affiliated Hospital of China Medical University, Shenyang, China, and the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Comment

In this manuscript the authors present a novel study on neuronavigation-assisted trajectory planning for deep brain biopsies based on susceptibility-weighted MR imaging. This allows a more precise visualization of the subcortical vasculature and better target selection, especially in combination with MRS, thus resulting in a lower post-biopsy hemorrhage rate. This technique seems valuable to the neurosurgical oncologist, as it decreases the risk of side effects. I encourage further study of this method.

Ekkehard Matthias Kasper

Boston, MA, USA

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Li, L., Luo, P. et al. Neuronavigation-assisted trajectory planning for deep brain biopsy with susceptibility-weighted imaging. Acta Neurochir 158, 1355–1362 (2016). https://doi.org/10.1007/s00701-016-2823-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00701-016-2823-3

Keywords

Navigation