Skip to main content

Advertisement

Log in

Gene-activated fat grafts for the repair of spinal cord injury: a pilot study

  • Experimental research - Spine
  • Published:
Acta Neurochirurgica Aims and scope Submit manuscript

Abstract

Background

Spinal cord injury (SCI) is a complex disease requiring a concerted multi-target approach. The most appropriate combination of therapeutic gene, cellular vehicle, and space filling scaffold still has to be determined. We present an approach that employs syngeneic adipose tissue serving as a three-dimensional biological implant, source of progenitor cells, and delivery system for therapeutic genes. In this pilot experiment, we evaluated the feasibility and short-term effects using gene-activated autologous fat grafts after SCI.

Methods

An experimental SCI model was established in syngeneic Fischer 344 rats by a T9-T10 hemimyelonectomy. Fat tissue was harvested from two donor rats. Animals were divided into four groups and treated with either (i) fat grafts activated by an adenoviral vector carrying the human NT-3 cDNA, (ii) or BDNF, (iii) or with untreated fat grafts or (iv) remained untreated. Animals were euthanized either 7 or 21 days after surgery, and spinal cord tissue was investigated by histological and immunohistochemical methods.

Results

NT-3 and BDNF were produced by gene-activated fat grafts for at least 21 days in vitro and in vivo. Fat tissue grafts remained stable at the site of implantation at 7 days and at 21 days. Neither BDNF-activated nor NT-3-activated fat graft had a detectable limiting effect on the neuronal degeneration. BDNF recruited microglia to perilesional site and attenuated their inflammatory response.

Conclusions

Gene-activated syngeneic fat tissue serves as a three-dimensional biological material delivering therapeutic molecules to the site of SCI over an extended period of time. The BDNF-fat graft attenuated the inflammatory response. Whether these findings translate into functional recovery will require extended observation times.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Badylak SF, Gilbert TW (2008) Immune response to biologic scaffold materials. Semin Immunol 20:109–116

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  2. Bradbury EJ, Khemani S, King VR, Priestley JV, McMahon SB (1999) NT-3 promotes growth of lesioned adult rat sensory axons ascending in the dorsal columns of the spinal cord. Eur J Neurosci 11:3873–3883

    Article  PubMed  CAS  Google Scholar 

  3. Coull JA, Beggs S, Boudreau D, Boivin D, Tsuda M, Inoue K, Gravel C, Salter MW, De Koninck Y (2005) BDNF from microglia causes the shift in neuronal anion gradient underlying neuropathic pain. Nature 438:1017–1021

    Article  PubMed  CAS  Google Scholar 

  4. Donnelly EM, Strappe PM, McGinley LM, Madigan NN, Geurts E, Rooney GE, Windebank AJ, Fraher J, Dockery P, O’Brien T, McMahon SS (2010) Lentiviral vector-mediated knockdown of the NG2 [corrected] proteoglycan or expression of neurotrophin-3 promotes neurite outgrowth in a cell culture model of the glial scar. J Gene Med 12:863–872

    Article  PubMed  CAS  Google Scholar 

  5. Franz S, Weidner N, Blesch A (2012) Gene therapy approaches to enhancing plasticity and regeneration after spinal cord injury. Exp Neurol 235:62–69

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  6. Galli R, Uckermann O, Winterhalder MJ, Sitoci-Ficici KH, Geiger KD, Koch E, Schackert G, Zumbusch A, Steiner G, Kirsch M (2012) Vibrational spectroscopic imaging and multiphoton microscopy of spinal cord injury. Anal Chem 84:8707–8714

    Article  PubMed  CAS  Google Scholar 

  7. Geremia NM, Pettersson LM, Hasmatali JC, Hryciw T, Danielsen N, Schreyer DJ, Verge VM (2010) Endogenous BDNF regulates induction of intrinsic neuronal growth programs in injured sensory neurons. Exp Neurol 223:128–142

    Article  PubMed  CAS  Google Scholar 

  8. Gimble JM, Guilak F (2003) Differentiation potential of adipose-derived adult stem (ADAS) cells. Curr Top Dev Biol 58:137–160

    Article  PubMed  Google Scholar 

  9. Grill RJ, Blesch A, Tuszynski MH (1997) Robust growth of chronically injured spinal cord axons induced by grafts of genetically modified NGF-secreting cells. Exp Neurol 148:444–452

    Article  PubMed  CAS  Google Scholar 

  10. Gu YL, Yin LW, Zhang Z, Liu J, Liu SJ, Zhang LF, Wang TH (2012) Neurotrophin expressions in neural stem cells grafted acutely to transected spinal cord of adult rats linked to functional improvement. Cell Mol Neurobiol

  11. Hammarberg H, Lidman O, Lundberg C, Eltayeb SY, Gielen AW, Muhallab S, Svenningsson A, Linda H, van Der Meide PH, Cullheim S, Olsson T, Piehl F (2000) Neuroprotection by encephalomyelitis: rescue of mechanically injured neurons and neurotrophin production by CNS-infiltrating T and natural killer cells. J Neurosci 20:5283–5291

    PubMed  CAS  Google Scholar 

  12. Harvey AR, Lovett SJ, Majda BT, Yoon JH, Wheeler LP, Hodgetts SI (2014) Neurotrophic factors for spinal cord repair: which, where, how and when to apply, and for what period of time? Brain Res

  13. Hollis ER 2nd, Lu P, Blesch A, Tuszynski MH (2009) IGF-I gene delivery promotes corticospinal neuronal survival but not regeneration after adult CNS injury. Exp Neurol 215:53–59

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Houweling DA, Lankhorst AJ, Gispen WH, Bar PR, Joosten EAJ (1998) Collagen containing neurotrophin-3 (NT-3) attracts regrowing injured corticospinal axons in the adult rat spinal cord and promotes partial functional recovery. Exp Neurol 153:49–59

    Article  PubMed  CAS  Google Scholar 

  15. Hwang DH, Jeong SR, Kim BG (2011) Gene transfer mediated by stem cell grafts to treat CNS injury. Expert Opin Biol Ther 11:1599–1610

    Article  PubMed  CAS  Google Scholar 

  16. Jain A, McKeon RJ, Brady-Kalnay SM, Bellamkonda RV (2011) Sustained delivery of activated Rho GTPases and BDNF promotes axon growth in CSPG-rich regions following spinal cord injury. PLoS One 6:e16135

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Jiang Y, Wei N, Lu T, Zhu J, Xu G, Liu X (2011) Intranasal brain-derived neurotrophic factor protects brain from ischemic insult via modulating local inflammation in rats. Neuroscience 172:398–405

    Article  PubMed  CAS  Google Scholar 

  18. Jiang Y, Wei N, Zhu J, Lu T, Chen Z, Xu G, Liu X (2010) Effects of brain-derived neurotrophic factor on local inflammation in experimental stroke of rat. Mediat Inflamm 2010:372423

    Google Scholar 

  19. Joosten EA, Houweling DA (2004) Local acute application of BDNF in the lesioned spinal cord anti-inflammatory and anti-oxidant effects. Neuroreport 15:1163–1166

    Article  PubMed  CAS  Google Scholar 

  20. Keeler BE, Liu G, Siegfried RN, Zhukareva V, Murray M, Houle JD (2012) Acute and prolonged hindlimb exercise elicits different gene expression in motoneurons than sensory neurons after spinal cord injury. Brain Res 1438:8–21

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  21. Kim H, Tator CH, Shoichet MS (2011) Chitosan implants in the rat spinal cord: biocompatibility and biodegradation. J Biomed Mater Res A 97:395–404

    Article  PubMed  Google Scholar 

  22. Kobayashi NR, Fan DP, Giehl KM, Bedard AM, Wiegand SJ, Tetzlaff W (1997) BDNF and NT-4/5 prevent atrophy of rat rubrospinal neurons after cervical axotomy, stimulate GAP-43 and Talpha1-tubulin mRNA expression, and promote axonal regeneration. J Neurosci 17:9583–9595

    PubMed  CAS  Google Scholar 

  23. Koda M, Kamada T, Hashimoto M, Murakami M, Shirasawa H, Sakao S, Ino H, Yoshinaga K, Koshizuka S, Moriya H, Yamazaki M (2007) Adenovirus vector-mediated ex vivo gene transfer of brain-derived neurotrophic factor to bone marrow stromal cells promotes axonal regeneration after transplantation in completely transected adult rat spinal cord. Eur Spine J 16:2206–2214

    Article  PubMed  PubMed Central  Google Scholar 

  24. Kokai LE, Marra K, Rubin JP (2014) Adipose stem cells: biology and clinical applications for tissue repair and regeneration. Transl Res 163:399–408

    Article  PubMed  CAS  Google Scholar 

  25. Kumamaru H, Saiwai H, Kubota K, Kobayakawa K, Yokota K, Ohkawa Y, Shiba K, Iwamoto Y, Okada S (2013) Therapeutic activities of engrafted neural stem/precursor cells are not dormant in the chronically injured spinal cord. Stem Cells 31:1535–1547

    Article  PubMed  CAS  Google Scholar 

  26. Le TT, Yue S, Cheng JX (2010) Shedding new light on lipid biology with coherent anti-Stokes Raman scattering microscopy. J Lipid Res 51:3091–3102

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  27. Li XL, Zhang W, Zhou X, Wang XY, Zhang HT, Qin DX, Zhang H, Li Q, Li M, Wang TH (2007) Temporal changes in the expression of some neurotrophins in spinal cord transected adult rats. Neuropeptides 41:135–143

    Article  PubMed  CAS  Google Scholar 

  28. Liu WG, Wang ZY, Huang ZS (2011) Bone marrow-derived mesenchymal stem cells expressing the bFGF transgene promote axon regeneration and functional recovery after spinal cord injury in rats. Neurol Res 33:686–693

    Article  PubMed  CAS  Google Scholar 

  29. Liu Y, Kim DH, Himes BT, Chow SY, Schallert T, Murray M, Tessler A, Fischer I (1999) Transplants of fibroblasts genetically modified to express BDNF promote regeneration of adult rat rubrospinal axons and recovery of forelimb function. J Neurosci 19:4370–4387

    PubMed  CAS  Google Scholar 

  30. Lu P, Jones LL, Tuszynski MH (2005) BDNF-expressing marrow stromal cells support extensive axonal growth at sites of spinal cord injury. Exp Neurol 191:344–360

    Article  PubMed  CAS  Google Scholar 

  31. Lu P, Jones LL, Tuszynski MH (2007) Axon regeneration through scars and into sites of chronic spinal cord injury. Exp Neurol 203:8–21

    Article  PubMed  CAS  Google Scholar 

  32. McTigue DM, Horner PJ, Stokes BT, Gage FH (1998) Neurotrophin-3 and brain-derived neurotrophic factor induce oligodendrocyte proliferation and myelination of regenerating axons in the contused adult rat spinal cord. J Neurosci 18:5354–5365

    PubMed  CAS  Google Scholar 

  33. Menei P, Montero-Menei C, Whittemore SR, Bunge RP, Bunge MB (1998) Schwann cells genetically modified to secrete human BDNF promote enhanced axonal regrowth across transected adult rat spinal cord. Eur J Neurosci 10:607–621

    Article  PubMed  CAS  Google Scholar 

  34. Mizoguchi Y, Monji A, Kato T, Seki Y, Gotoh L, Horikawa H, Suzuki SO, Iwaki T, Yonaha M, Hashioka S, Kanba S (2009) Brain-derived neurotrophic factor induces sustained elevation of intracellular Ca2+ in rodent microglia. J Immunol 183:7778–7786

    Article  PubMed  CAS  Google Scholar 

  35. Nishimura S, Yasuda A, Iwai H, Takano M, Kobayashi Y, Nori S, Tsuji O, Fujiyoshi K, Ebise H, Toyama Y, Okano H, Nakamura M (2013) Time-dependent changes in the microenvironment of injured spinal cord affects the therapeutic potential of neural stem cell transplantation for spinal cord injury. Mol Brain 6:3

    Article  PubMed  PubMed Central  Google Scholar 

  36. Okano T, Nakagawa T, Kita T, Endo T, Ito J (2006) Cell-gene delivery of brain-derived neurotrophic factor to the mouse inner ear. Mol Ther: J Am Soc Gene Ther 14:866–871

    Article  CAS  Google Scholar 

  37. Perale G, Rossi F, Santoro M, Peviani M, Papa S, Llupi D, Torriani P, Micotti E, Previdi S, Cervo L, Sundstrom E, Boccaccini AR, Masi M, Forloni G, Veglianese P (2012) Multiple drug delivery hydrogel system for spinal cord injury repair strategies. J Control Release: Off J Control Release Soc 159:271–280

    Article  CAS  Google Scholar 

  38. Qin DX, Zou XL, Luo W, Zhang W, Zhang HT, Li XL, Zhang H, Wang XY, Wang TH (2006) Expression of some neurotrophins in the spinal motoneurons after cord hemisection in adult rats. Neurosci Lett 410:222–227

    Article  PubMed  CAS  Google Scholar 

  39. Salgado AJ, Reis RL, Sousa NJ, Gimble JM (2010) Adipose tissue-derived stem cells secretome: soluble factors and their roles in regenerative medicine. Curr Stem Cell Res Ther 5:103–110

    Article  PubMed  CAS  Google Scholar 

  40. Schnell L, Schneider R, Kolbeck R, Barde YA, Schwab ME (1994) Neurotrophin-3 enhances sprouting of corticospinal tract during development and after adult spinal cord lesion. Nature 367:170–173

    Article  PubMed  CAS  Google Scholar 

  41. Shumsky JS, Tobias CA, Tumolo M, Long WD, Giszter SF, Murray M (2003) Delayed transplantation of fibroblasts genetically modified to secrete BDNF and NT-3 into a spinal cord injury site is associated with limited recovery of function. Exp Neurol 184:114–130

    Article  PubMed  CAS  Google Scholar 

  42. Teng YD, Lavik EB, Qu X, Park KI, Ourednik J, Zurakowski D, Langer R, Snyder EY (2002) Functional recovery following traumatic spinal cord injury mediated by a unique polymer scaffold seeded with neural stem cells. Proc Natl Acad Sci U S A 99:3024–3029

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  43. Tom VJ, Sandrow-Feinberg HR, Miller K, Domitrovich C, Bouyer J, Zhukareva V, Klaw MC, Lemay MA, Houle JD (2013) Exogenous BDNF enhances the integration of chronically injured axons that regenerate through a peripheral nerve grafted into a chondroitinase-treated spinal cord injury site. Exp Neurol 239:91–100

    Article  PubMed  CAS  Google Scholar 

  44. Tuszynski MH, Gabriel K, Gage FH, Suhr S, Meyer S, Rosetti A (1996) Nerve growth factor delivery by gene transfer induces differential outgrowth of sensory, motor, and noradrenergic neurites after adult spinal cord injury. Exp Neurol 137:157–173

    Article  PubMed  CAS  Google Scholar 

  45. Uckermann O, Uhlmann S, Wurm A, Reichenbach A, Wiedemann P, Bringmann A (2005) ADPbetaS evokes microglia activation in the rabbit retina in vivo. Purinergic Signal 1:383–387

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  46. Usui N, Watanabe K, Ono K, Tomita K, Tamamaki N, Ikenaka K, Takebayashi H (2012) Role of motoneuron-derived neurotrophin 3 in survival and axonal projection of sensory neurons during neural circuit formation. Development 139:1125–1132

    Article  PubMed  CAS  Google Scholar 

  47. Van Craenenbroeck K, Vanhoenacker P, Haegeman G (2000) Episomal vectors for gene expression in mammalian cells. Eur J Biochem/FEBS 267:5665–5678

    Article  Google Scholar 

  48. Wang M, Zhai P, Chen X, Schreyer DJ, Sun X, Cui F (2011) Bioengineered scaffolds for spinal cord repair. Tissue Eng B Rev 17:177–194

    Article  Google Scholar 

  49. Weishaupt N, Mason AL, Hurd C, May Z, Zmyslowski DC, Galleguillos D, Sipione S, Fouad K (2014) Vector-induced NT-3 expression in rats promotes collateral growth of injured corticospinal tract axons far rostral to a spinal cord injury. Neuroscience 272:65–75

    Article  PubMed  CAS  Google Scholar 

  50. Xu XM, Guenard V, Kleitman N, Aebischer P, Bunge MB (1995) A combination of BDNF and NT-3 promotes supraspinal axonal regeneration into Schwann cell grafts in adult rat thoracic spinal cord. Exp Neurol 134:261–272

    Article  PubMed  CAS  Google Scholar 

  51. Yick LW, Wu WT, So KF, Yip HK (1999) Peripheral nerve graft and neurotrophic factors enhance neuronal survival and expression of nitric oxide synthase in Clarke’s nucleus after hemisection of the spinal cord in adult rat. Exp Neurol 159:131–138

    Article  PubMed  CAS  Google Scholar 

  52. Zhang HT, Luo J, Sui LS, Ma X, Yan ZJ, Lin JH, Wang YS, Chen YZ, Jiang XD, Xu RX (2009) Effects of differentiated versus undifferentiated adipose tissue-derived stromal cell grafts on functional recovery after spinal cord contusion. Cell Mol Neurobiol 29:1283–1292

    Article  PubMed  Google Scholar 

  53. Zhang X, Xu Y, Wang J, Zhou Q, Pu S, Jiang W, Du D (2012) The effect of intrathecal administration of glial activation inhibitors on dorsal horn BDNF overexpression and hind paw mechanical allodynia in spinal nerve ligated rats. J Neural Transm 119:329–336

    Article  PubMed  CAS  Google Scholar 

  54. Zhou LJ, Yang T, Wei X, Liu Y, Xin WJ, Chen Y, Pang RP, Zang Y, Li YY, Liu XG (2011) Brain-derived neurotrophic factor contributes to spinal long-term potentiation and mechanical hypersensitivity by activation of spinal microglia in rat. Brain Behav Immun 25:322–334

    Article  PubMed  CAS  Google Scholar 

Download references

Authors’ contributions

VMB, KHSF, OBB, and MK designed the study. VBM, KHSF, EL, AI, CT, and MS performed experiments. VMB, KHSF, MK, OU, OBB, GS, and HZ analyzed data and wrote the manuscript. MK coordinated the study. All authors commented on and revised the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Oliver B. Betz or Matthias Kirsch.

Ethics declarations

Funding

No funding was received for this research.

Conflict of interest

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest (such as honoraria; educational grants; participation in speakers’ bureaus; membership, employment, consultancies, stock ownership, or other equity interest; and expert testimony or patent-licensing arrangements), or non-financial interest (such as personal or professional relationships, affiliations, knowledge or beliefs) in the subject matter or materials discussed in this manuscript.

Animal experiments

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. The study was approved by the Dresden University of Technology and the federal government of Saxony (24D-9168.11-1-20078), and all procedures involving animals were in accordance with the ethical standards of the Dresden University of Technology and the federal government of Saxony.

Additional information

Volker M. Betz and K. Hakan Sitoci-Ficici contributed equally to this work.

Oliver B. Betz and Matthias Kirsch are co-corresponding authors and contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Betz, V.M., Sitoci-Ficici, K.H., Uckermann, O. et al. Gene-activated fat grafts for the repair of spinal cord injury: a pilot study. Acta Neurochir 158, 367–378 (2016). https://doi.org/10.1007/s00701-015-2626-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00701-015-2626-y

Keywords

Navigation