Skip to main content

Advertisement

Log in

Keyhole interlaminar dorsal rhizotomy for spastic diplegia in cerebral palsy

  • Technical Note - Neurosurgical Techniques
  • Published:
Acta Neurochirurgica Aims and scope Submit manuscript

Abstract

Background

The efficiency and safety of dorsal rhizotomies for cerebral palsy lie in the accuracy of radicular identification together with selectivity of root sectioning. Two different exposures are currently in use. The first is extended laminotomy/laminectomy from the upper lumbar level to the sacrum, which allows accurate identification of all L2–S2 roots/rootlets. The second is limited laminotomy exposing the conus/cauda equina at the thoracolumbar junction; this less invasive method limits accessibility to the roots. To optimize the accuracy and selectivity while minimizing invasiveness, the authors developed a tailored interlaminar procedure targeting the radicular levels involved in the harmful components of spasticity directly and individually.

Methods

Six patients with spastic diplegia at different levels of the Gross Motor Functional Classification System were selected. In each patient, two to three interlaminar spaces, preselected according to planning, were enlarged in the “keyhole” fashion, respecting the spinous processes and interspinous ligaments. Ventral root stimulation identified the radicular level. Dorsal root stimulation evaluated its implication in the hyperactive segmental circuits, helping quantify the percentage of rootlets to be cut.

Results

There were neither wound-related nor general complications. At 1 year of follow-up, X-ray examination did not reveal kyphosis or instability. In all children, the excess of spasticity was reduced. The Ashworth score decreased from 3.2 on average to 0.6 postoperatively (range: 2–4 to 0–2). Regarding the functional status at 1 year of follow-up for the three ambulatory children, the Gillette ability-to-walk score increased from 3/10 on average to 7.3/10 postoperatively (range: 2–4 to 7–8). For the three non-ambulatory children, abnormal postures, painful contractures and ease of care were much improved.

Conclusion

Keyhole interlaminar dorsal rhizotomy (KIDr) offers direct intradural access to each of the ventral/dorsal roots, thus maximizing the reliability of anatomical mapping and allowing individual physiological testing of all targeted roots. The interlaminar approach minimizes invasiveness by respecting the posterior spine structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Abbott R (1991) Indications for surgery to treat children with spasticity due to cerebral palsy. In: Sindou M, Abbott R, Keravel Y (eds) Neurosurgery for spasticity: a multidisciplinary approach. Springer, Wien New York, pp 215–217

    Chapter  Google Scholar 

  2. Abbott R (2009) Selective dorsal rhizotomy for the treatment of childhood spasticity. In: Sindou M (ed) Practical Handbook of Neurosurgery, vol 3. Springer, Wien New York, pp 387–395

    Google Scholar 

  3. Abbott R, Forem SL, Johann M (1989) Selective posterior rhizotomy for the treatment of spasticity: a review. Childs Nerv Syst 5:337–346

    Article  CAS  PubMed  Google Scholar 

  4. Ashworth B (1964) Preliminary trial of carisoprodol in multiple sclerosis. Practitioner 192:540–542

    CAS  PubMed  Google Scholar 

  5. Cobb JR (1948) Outline for the study of scoliosis. AAOS Instr Course Lect 5:261

    Google Scholar 

  6. Cohen AR, Webster HC (1991) How selective is selective posterior rhizotomy. Surg Neurol 35:267–272

    Article  CAS  PubMed  Google Scholar 

  7. Damiano D, Quinlivan J, Owen B, Payne P, Nelson K, Abel M (2002) What does the Ashworth scale really measure and are instrumented measures more valid and precise? Dev Med Child Neurol 44:112–118

    Article  PubMed  Google Scholar 

  8. Engsberg JR, Ross SA, Collins DR, Park TS (2006) Effect of selective dorsal rhizotomy in the treatment of children with cerebral palsy. J Neurosurg 105(1 Suppl):8–15

    PubMed Central  PubMed  Google Scholar 

  9. Farmer JP, McNeely PD (2004) Surgery in the dorsal roots for children with cerebral palsy. Oper Tech Neurosurg 7:153–156

    Article  Google Scholar 

  10. Farmer JP, Sabbagh AJ (2007) Selective dorsal rhizotomies in the treatment of spasticity related to cerebral palsy. Childs Nerv Syst 23:991–1002

    Article  PubMed  Google Scholar 

  11. Fasano VA, Barolat-Romana G, Ivaldi A, Sguazzi A (1976) La radicotomie postérieure fonctionnelle dans le traitement de la spasticité cérébrale. Neurochirurgie 22:23–34

    CAS  PubMed  Google Scholar 

  12. Fasano VA, Broggi G, Zeme S, Lo Russo G, Sguazzi A (1980) Long-term results of posterior functional rhizotomy. Acta Neurochir Suppl (Wien) 30:435–439

    CAS  Google Scholar 

  13. Foerster O (1913) On the indications and results of the excision of posterior spinal nerve roots in men. Surg Gynecol Obstet 16:463–474

    Google Scholar 

  14. Golan JD, Hall JA, O’Gorman G, Poulin C, Benaroch TE, Cantin MA, Farmer JP (2007) Spinal deformities following selective dorsal rhizotomy. J Neurosurg 106(6 Suppl):441–449

    PubMed  Google Scholar 

  15. Gros C (1977) Table ronde de la Societé Française de Neurochirurgie sur la chirurgie de la spasticité. Neurochirurgie 23:316–388

    Google Scholar 

  16. Gros C (1979) Spasticity: clinical classification and surgical treatment. In: Krayenbühl Η, Brihaye J, Loew F, Logue V, Mingrino S, Pertuiset B, Symon L, Troupp H, Yaşargil MG (eds) Advances and Technical Standards in Neurosurgery, vol 6. Springer, Wien New York, pp 55–97

    Chapter  Google Scholar 

  17. Hodgkinson I, Bérard C, Jindrich ML, Sindou M, Mertens P, Bérard J (1997) Selective dorsal rhizotomy in children with cerebral palsy: results in 18 cases at one year postoperatively. Stereotact Funct Neurosurg 69:259–267

    Article  CAS  PubMed  Google Scholar 

  18. Johnson MB, Goldstein L, Thomas SS, Piatt J, Aiona M, Sussman MJ (2004) Spinal deformity after selective dorsal rhizotomy in ambulatory patients with cerebral palsy. J Pediatr Orthop 24:529–536

    Article  PubMed  Google Scholar 

  19. Laitinen LV, Nilsson S, Fugl-Meyer AR (1983) Selective posterior rhizotomy for treatment of spasticity. J Neurosurg 58:895–899

    Article  CAS  PubMed  Google Scholar 

  20. Mackey AH, Walt SE, Lobb G, Stott NS (2004) Intraobserver reliability of the modified Tardieu scale in the upper limb of children with hemiplegia. Dev Med Child Neurol 46:267–272

    Article  PubMed  Google Scholar 

  21. Mittal S, Farmer JP, Al-Atassi B, Gibis J, Kennedy E, Galli C, Courchesnes G, Poulin C, Cantin MA, Benaroch TE (2002) Long-term functional outcome after selective posterior rhizotomy. J Neurosurg 97:315–325

    Article  PubMed  Google Scholar 

  22. Mittal S, Farmer JP, Poulin C, Silver K (2001) Reliability of intraoperative electrophysiological monitoring in selective posterior rhizotomy. J Neurosurg 95:67–75

    Article  CAS  PubMed  Google Scholar 

  23. Morell DS, Pearson JM, Sauser DD (2002) Progressive bone and joint abnormalities of the spine and lower extremities in cerebral palsy. Radiographics 22:257–268

    Article  Google Scholar 

  24. Nishida T, Thatcher SW, Marty GR (1995) Selective posterior rhizotomy for children with cerebral palsy: a 7-year experience. Childs Nerv Syst 11:374–380

    Article  CAS  PubMed  Google Scholar 

  25. Nordmark E, Lundkvist Josenby A, Lagergren J, Anderson G, Strömblad LG, Westbom L (2008) Long-term outcomes five years after selective dorsal rhizotomy. BMC Pediatr 8:54

    Article  PubMed Central  PubMed  Google Scholar 

  26. Novacheck TF, Stout JL, Tervo R (2000) Reliability and validity of the Gillette Functional Assessement Questionnaire as an outcome measure in children with walking disabilities. J Pediatr Orthop 20:75–81

    CAS  PubMed  Google Scholar 

  27. Palisano R, Rosenbaum P, Walter S, Russell D, Wood E, Galuppi B (1997) Development and reliability of a system to classify gross motor function in children with cerebral palsy. Dev Med Child Neurol 39:214–223

    Article  CAS  PubMed  Google Scholar 

  28. Park TS, Gaffney PE, Kaufman BA, Molleston MC (1993) Selective lumbosacral dorsal rhizotomy immediately caudal to the conus medullaris for cerebral palsy spasticity. Neurosurgery 33:929–933

    Article  CAS  PubMed  Google Scholar 

  29. Park TS, Johnston JM (2008) Selective dorsal rhizotomy for spastic cerebral palsy. In: Goodrich JT (ed) Pediatric neurosurgery, 2nd edn. Thieme, New York, pp 177–183

    Google Scholar 

  30. Peacock WJ, Arens LJ (1982) Selective posterior rhizotomy for the relief of spasticity in cerebral palsy. S Afr Med J 62:119–124

    CAS  PubMed  Google Scholar 

  31. Peter JC, Arens LJ (1993) Selective posterior lumbosacral rhizotomy for the management of cerebral palsy spasticity: a 10-year experience. S Afr Med J 83:745–747

    CAS  PubMed  Google Scholar 

  32. Peter JC, Hoffman EB, Arens LJ (1993) Spondylolysis and spondylolisthesis after five-level lumbosacral laminectomy for selective posterior rhizotomy in cerebral palsy. Childs Nerv Syst 9:285–287, discussion 287–288

    Article  CAS  PubMed  Google Scholar 

  33. Phillips LH, Park TS (1989) Electrophysiologic studies of selective posterior rhizotomy patients. In: Park TS, Phillips LH, Peacock WJ (eds) Management of spasticity in cerebral palsy and spinal cord injury. Neurosurgery: state of the art reviews, vol 4(2). Hanley & Belfus, Philadelphia, pp 459–470

    Google Scholar 

  34. Privat JM, Benezech J, Frerebeau P, Gros C (1976) Sectorial posterior rhizotomy, a new technique of surgical treatment for spasticity. Acta Neurochir (Wien) 35:181–195

    Article  CAS  Google Scholar 

  35. Propst-Proctor SL, Bleck EE (1983) Radiographic determination of lordosis and kyphosis in normal and scoliotic children. J Pediatr Orthop 3:344–346

    Article  CAS  PubMed  Google Scholar 

  36. Russell DJ, Rosenbaum PL, Avery LM, Lane Μ (2002) Gross motor function measure (GMFM-66 & GMFM-88). Mac Keith, London

    Google Scholar 

  37. Salame K, Ouaknine GE, Rochkind S, Constantini S, Razon N (2003) Surgical treatment of spasticity by selective posterior rhizotomy: 30 years experience. Isr Med Assoc J 5:543–546

    PubMed  Google Scholar 

  38. Schirmer CM, Shils JL, Arle JE, Cosgrove GR, Dempsey PK, Tarlov E, Kim S, Martin CJ, Fetz C, Moul M, Magge S (2011) Heuristic map of myotomal innervation in humans using direct intraoperative nerve root stimulation. J Neurosurg Spine 15:64–70

    Article  PubMed  Google Scholar 

  39. Sindou M (2003) Radicotomies dorsales chez l’enfant. Neurochirurgie 49:312–323

    CAS  PubMed  Google Scholar 

  40. Sindou M, Georgoulis G, Mertens P (2014) Neurosurgery for Spasticity: A practical Guide for Treating Children and Adults. Springer: Wien, pp 182–184, 205–207

  41. Spiegel DA, Loder RT, Alley KA, Rowley S, Gutknecht S, Smith-Wright DL, Dunn ME (2004) Spinal deformity following selective dorsal rhizotomy. J Pediatr Orthop 24:30–36

    Article  PubMed  Google Scholar 

  42. Steinbok P, Hicdonmez T, Sawatzky B, Beauchamp R, Wickenheiser D (2005) Spinal deformities after selective dorsal rhizotomy for spastic cerebral palsy. J Neurosurg 102(4 Suppl):363–373

    PubMed  Google Scholar 

  43. Steinbok P, Keyes R, Langill L, Cochrane DD (1994) The validity of electrophysiological criteria used in selective functional posterior rhizotomy for treatment of spastic cerebral palsy. J Neurosurg 81:354–361

    Article  CAS  PubMed  Google Scholar 

  44. Steinbok P, Reiner A, Beauchamp RD, Cochrane DD, Keyes R (1992) Selective functional posterior rhizotomy for treatment of spastic cerebral palsy in children: review of 50 consecutive cases. Pediatr Neurosurg 18:34–42

    Article  CAS  PubMed  Google Scholar 

  45. Steinbok P (2007) Selective dorsal rhizotomy for cerebral palsy: a review. Childs Nerv Syst 23:981–990

    Article  PubMed  Google Scholar 

  46. Taira T, Hori T (2008) Selective peripheral neurotomy and selective dorsal rhizotomy. Brain Nerve 60:1427–1436

    PubMed  Google Scholar 

  47. Turi M, Kalen V (2000) The risk of spinal deformity after selective dorsal rhizotomy. J Pediatr Orthop 20:104–107

    CAS  PubMed  Google Scholar 

  48. Yasuoka S, Peterson HA, MacCarty CS (1982) Incidence of spinal column deformity after multilevel laminectomy in children and adults. J Neurosurg 57:441–445

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of Interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Sindou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sindou, M., Georgoulis, G. Keyhole interlaminar dorsal rhizotomy for spastic diplegia in cerebral palsy. Acta Neurochir 157, 1187–1196 (2015). https://doi.org/10.1007/s00701-015-2453-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00701-015-2453-1

Keywords

Navigation