Skip to main content

Advertisement

Log in

Paediatric cranial defect reconstruction using bioactive fibre-reinforced composite implant: early outcomes

  • Clinical Article - Pediatrics
  • Published:
Acta Neurochirurgica Aims and scope Submit manuscript

Abstract

Background

In children, approximately half of cryopreserved allograft bone flaps fail due to infection and resorption. Synthetic materials offer a solution for allograft bone flap resorption. Fibre-reinforced composite with a bioactive glass particulate filling is a new synthetic material for bone reconstruction. Bioactive glass is capable of chemically bonding with bone and is osteoinductive, osteoconductive and bacteriostatic. Fibre-reinforced composite allows for fabricating thin (0.8 mm) margins for implant, which are designed as onlays on the existing bone. Bioactive glass is dissolved over time, whereas the fibre-reinforced composite serves as a biostable part of the implant, and these have been tested in preclinical and adult clinical trials. In this study, we tested the safety and other required properties of this composite material in large skull bone reconstruction with children.

Method

Eight cranioplasties were performed on seven patients, aged 2.5–16 years and having large (>16 cm2) skull bone defects. The implant used in this study was a patient-specific, glass-fibre-reinforced composite, which contained a bioactive glass particulate compound, S53P4.

Results

During follow-up (average 35.1 months), one minor complication was observed and three patients needed revision surgery. Two surgical site infections were observed. After treatment of complications, a good functional and cosmetic outcome was observed in all patients. The implants had an onlay design and fitted the defect well. In clinical and imaging examinations, the implants were in the original position with no signs of implant migration, degradation or mechanical breakage.

Conclusions

Here, we found that early cranioplasty outcomes with the fibre-reinforced composite implant were promising. However, a longer follow-up time and a larger group of patients are needed to draw firmer conclusions regarding the long-term benefits of the proposed novel biomaterial and implant design. The glass-fibre-reinforced composite implant incorporated by particles of bioactive glass may offer an original, non-metallic and bioactive alternative for reconstruction of large skull bone defects in a paediatric population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Aitasalo KM, Piitulainen JM, Rekola J, Vallittu PK (2014) Craniofacial bone reconstruction with bioactive fiber-reinforced composite implant. Head Neck 36:722–728

    Article  PubMed  Google Scholar 

  2. Ballo AM, Akca EA, Ozen T, Lassila L, Vallittu PK, Närhi TO (2009) Bone tissue responses to glass fiber-reinforced composite implants–a histomorphometric study. Clin Oral Implants Res 20:608–615

    CAS  PubMed  Google Scholar 

  3. Bowers CA, Riva-Cambrin J, 2nd Hertzler DA, Walker ML (2013) Risk factors and rates of bone flap resorption in pediatric patients after decompressive craniectomy for traumatic brain injury. J Neurosurg Pediatr 11:526–532

    Article  PubMed  Google Scholar 

  4. De Bonis P, Frassanito P, Mangiola A, Nucci CG, Anile C, Pompucci A (2012) Cranial repair: how complicated is filling a “hole”? J Neurotrauma 29:1071–1076

    Article  PubMed  Google Scholar 

  5. DeLuca L, Raszewski R, Tresser N, Guyuron B (1997) The fate of preserved autogenous bone graft. Plast Reconstr Surg 99:1324–1328

    Article  CAS  PubMed  Google Scholar 

  6. Drago L, Romano D, De Vecchi E, Vassena C, Logoluso N, Mattina R, Romano CL (2013) Bioactive glass BAG-S53P4 for the adjunctive treatment of chronic osteomyelitis of the long bones: an in vitro and prospective clinical study. BMC Infect Dis 13:584

    Article  PubMed Central  PubMed  Google Scholar 

  7. Dünisch P, Walter J, Sakr Y, Kalff R, Waschke A, Ewald C (2013) Risk factors of aseptic bone resorption: a study after autologous bone flap reinsertion due to decompressive craniotomy. J Neurosurg 118:1141–1147

    Article  PubMed  Google Scholar 

  8. Engstrand T, Kihlström L, Neovius E, Skogh AC, Lundgren TK, Jacobsson H, Bohlin J, Aberg J, Engqvist H (2014) Development of a bioactive implant for repair and potential healing of cranial defects. J Neurosurg 120:273–277

    Article  PubMed  Google Scholar 

  9. Frassanito P, Massimi L, Caldarelli M, Tamburrini G, Di Rocco C (2012) Complications of delayed cranial repair after decompressive craniectomy in children less than 1 year old. Acta Neurochir (Wien) 154:927–933

    Article  Google Scholar 

  10. Frassanito P, Massimi L, Caldarelli M, Tamburrini G, Di Rocco C (2014) Bone flap resorption in infants. J Neurosurg Pediatr 13:243–244

    Article  PubMed  Google Scholar 

  11. Goldstein JA, Paliga JT, Bartlett SP (2013) Cranioplasty: indications and advances. Curr Opin Otolaryngol Head Neck Surg 21:400–409

    Article  PubMed  Google Scholar 

  12. Grant GA, Jolley M, Ellenbogen RG, Roberts TS, Gruss JR, Loeser JD (2004) Failure of autologous bone-assisted cranioplasty following decompressive craniectomy in children and adolescents. J Neurosurg 100:163–168

    PubMed  Google Scholar 

  13. Güresir E, Schuss P, Vatter H, Raabe A, Seifert V, Beck J (2009) Decompressive craniectomy in subarachnoid hemorrhage. Neurosurg Focus 26:E4

    Article  PubMed  Google Scholar 

  14. Hench LL, Paschall HA (1973) Direct chemical bond of bioactive glass-ceramic materials to bone and muscle. J Biomed Mater Res 7:25–42

    Article  CAS  PubMed  Google Scholar 

  15. Horan TC, Andrus M, Dudeck MA (2008) CDC/NHSN surveillance definition of health care-associated infection and criteria for specific types of infections in the acute care setting. Am J Infect Control 36:309–332

    Article  PubMed  Google Scholar 

  16. Hulbert SF, Young FA, Mathews RS, Klawitter JJ, Talbert CD, Stelling FH (1970) Potential of ceramic materials as permanently implantable skeletal prostheses. J Biomed Mater Res 4:433–456

    Article  CAS  PubMed  Google Scholar 

  17. Kamdar MR, Gomez RA, Ascherman JA (2009) Intracranial volumes in a large series of healthy children. Plast Reconstr Surg 124:2072–2075

    Article  CAS  PubMed  Google Scholar 

  18. Klawitter JJ, Bagwell JG, Weinstein AM, Sauer BW (1976) An evaluation of bone growth into porous high density polyethylene. J Biomed Mater Res 10:311–323

    Article  CAS  PubMed  Google Scholar 

  19. Leppäranta O, Vaahtio M, Peltola T, Zhang D, Hupa L, Hupa M, Ylänen H, Salonen JI, Viljanen MK, Eerola E (2008) Antibacterial effect of bioactive glasses on clinically important anaerobic bacteria in vitro. J Mater Sci Mater Med 19:547–551

    Article  PubMed  Google Scholar 

  20. Lin AY, Kinsella CR Jr, Rottgers SA, Smith DM, Grunwaldt LJ, Cooper GM, Losee JE (2012) Custom porous polyethylene implants for large-scale pediatric skull reconstruction: early outcomes. J Craniofac Surg 23:67–70

    Article  PubMed  Google Scholar 

  21. Lindfors NC, Hyvönen P, Nyyssönen M, Kirjavainen M, Kankare J, Gullichsen E, Salo J (2010) Bioactive glass S53P4 as bone graft substitute in treatment of osteomyelitis. Bone 47:212–218

    Article  CAS  PubMed  Google Scholar 

  22. Martin KD, Franz B, Kirsch M, Polanski W, von der Hagen M, Schackert G, Sobottka SB (2014) Autologous bone flap cranioplasty following decompressive craniectomy is combined with a high complication rate in pediatric traumatic brain injury patients. Acta Neurochir (Wien) 156:813–824

    Article  Google Scholar 

  23. McAndrew J, Efrimescu C, Sheehan E, Niall D (2013) Through the looking glass; bioactive glass S53P4 (BonAlive®) in the treatment of chronic osteomyelitis. Ir J Med Sci 182:509–511

    Article  CAS  PubMed  Google Scholar 

  24. Munukka E, Leppäranta O, Korkeamäki M, Vaahtio M, Peltola T, Zhang D, Hupa L, Ylänen H, Salonen JI, Viljanen MK, Eerola E (2008) Bactericidal effects of bioactive glasses on clinically important aerobic bacteria. J Mater Sci Mater Med 19:27–32

    Article  CAS  PubMed  Google Scholar 

  25. Neovius E, Engstrand T (2010) Craniofacial reconstruction with bone and biomaterials: review over the last 11 years. J Plast Reconstr Aesthet Surg 63:1615–1623

    Article  PubMed  Google Scholar 

  26. Peltola M, Aitasalo K, Suonpää J, Varpula M, Yli-Urpo A (2006) Bioactive glass S53P4 in frontal sinus obliteration: a long-term clinical experience. Head Neck 28:834–841

    Article  PubMed  Google Scholar 

  27. Piedra MP, Thompson EM, Selden NR, Ragel BT, Guillaume DJ (2012) Optimal timing of autologous cranioplasty after decompressive craniectomy in children. J Neurosurg Pediatr 10:268–272

    Article  PubMed  Google Scholar 

  28. Qiu W, Guo C, Shen H, Chen K, Wen L, Huang H, Ding M, Sun L, Jiang Q, Wang W (2009) Effects of unilateral decompressive craniectomy on patients with unilateral acute post-traumatic brain swelling after severe traumatic brain injury. Crit Care 13:R185

    Article  PubMed Central  PubMed  Google Scholar 

  29. Ritter L, Elger MC, Rothamel D, Fienitz T, Zinser M, Schwarz F, Zoller JE (2014) Accuracy of peri-implant bone evaluation using cone beam CT, digital intra-oral radiographs and histology. Dentomaxillofac Radiol 43:20130088

    Article  CAS  PubMed  Google Scholar 

  30. Rocque BG, Amancherla K, Lew SM, Lam S (2013) Outcomes of cranioplasty following decompressive craniectomy in the pediatric population. J Neurosurg Pediatr 12:120–125

    Article  PubMed  Google Scholar 

  31. Rogers GF, Greene AK (2012) Autogenous bone graft: basic science and clinical implications. J Craniofac Surg 23:323–327

    Article  PubMed  Google Scholar 

  32. Sarin J, Grénman R, Aitasalo K, Pulkkinen J (2012) Bioactive glass S53P4 in mastoid obliteration surgery for chronic otitis media and cerebrospinal fluid leakage. Ann Otol Rhinol Laryngol 121:563–569

    Article  PubMed  Google Scholar 

  33. Schuss P, Vatter H, Marquardt G, Imohl L, Ulrich CT, Seifert V, Guresir E (2012) Cranioplasty after decompressive craniectomy: the effect of timing on postoperative complications. J Neurotrauma 29:1090–1095

    Article  PubMed  Google Scholar 

  34. Staffa G, Barbanera A, Faiola A, Fricia M, Limoni P, Mottaran R, Zanotti B, Stefini R (2012) Custom made bioceramic implants in complex and large cranial reconstruction: a two-year follow-up. J Craniomaxillofac Surg 40:e65–e70

    Article  PubMed  Google Scholar 

  35. Staffa G, Nataloni A, Compagnone C, Servadei F (2007) Custom made cranioplasty prostheses in porous hydroxy-apatite using 3D design techniques: 7 years experience in 25 patients. Acta Neurochir (Wien) 149:161–170, discussion 170

    Article  CAS  Google Scholar 

  36. Tuusa SM, Peltola MJ, Tirri T, Puska MA, Röyttä M, Aho H, Sandholm J, Lassila LVJ, Vallittu PK (2008) Reconstruction of critical size calvarial bone defects in rabbits with glass-fiber-reinforced composite with bioactive glass granule coating. J Biomed Mater Res B Appl Biomater 84:510–519

    Article  PubMed  Google Scholar 

  37. Waltimo T, Brunner TJ, Vollenweider M, Stark WJ, Zehnder M (2007) Antimicrobial effect of nanometric bioactive glass 45S5. J Dent Res 86:754–757

    Article  CAS  PubMed  Google Scholar 

  38. Wang D, Kunzel A, Golubovic V, Mihatovic I, John G, Chen Z, Becker J, Schwarz F (2013) Accuracy of peri-implant bone thickness and validity of assessing bone augmentation material using cone beam computed tomography. Clin Oral Investig 17:1601–1609

    Article  PubMed  Google Scholar 

  39. Yli-Urpo H, Närhi T, Söderling E (2003) Antimicrobial effects of glass ionomer cements containing bioactive glass (S53P4) on oral micro-organisms in vitro. Acta Odontol Scand 61:241–246

    Article  CAS  PubMed  Google Scholar 

  40. Zehnder M, Söderling E, Salonen J, Waltimo T (2004) Preliminary evaluation of bioactive glass S53P4 as an endodontic medication in vitro. J Endod 30:220–224

    Article  PubMed  Google Scholar 

  41. Zehnder M, Waltimo T, Sener B, Söderling E (2006) Dentin enhances the effectiveness of bioactive glass S53P4 against a strain of Enterococcus faecalis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 101:530–535

    Article  PubMed  Google Scholar 

  42. Zhang D, Leppäranta O, Munukka E, Ylänen H, Viljanen MK, Eerola E, Hupa M, Hupa L (2010) Antibacterial effects and dissolution behavior of six bioactive glasses. J Biomed Mater Res A 93:475–483

    PubMed  Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to the researcher team of the BioCity Turku Biomaterials Research Program (www.biomaterials.utu.fi) and principal financing partners of the FRC implant research: Finnish Agency for Technology and Innovation (TEKES), Academy of Finland and European Commission (Grant: NEWBONE NMP3-CT-006-026279-2), Turku University Hospital and Oulu University Hospital.

Robert M. Badeau, Ph.D., of Aura Professional English Consulting, Ltd (www.auraenglish.com), is acknowledged for this manuscript’s language content editing.

Disclosure

Author contributions to the study and manuscript preparation include the following. Conception and design: Aitasalo, Serlo, Vuorinen. Acquisition of data: all authors. Analysis and interpretation of data: all authors. Drafting the article: Piitulainen, Posti. Implant designing and material expertise and implant fabrication: Vallittu. Critically revising the article: all authors. Reviewed submitted version of manuscript: all authors. Approved the final version of the manuscript on behalf of all authors: Piitulainen.

Conflicts of interest

Authors J.P., J.P.P., V.V. and W.S. have received financial support in the form of a congress fee and travel expenses paid by Skulle Implants Corporation.

Authors K.A. and P.V. are Board Members and shareholders of Skulle Implants Corporation, which aims to commercialise FRC implants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaakko M. Piitulainen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Piitulainen, J.M., Posti, J.P., Aitasalo, K.M.J. et al. Paediatric cranial defect reconstruction using bioactive fibre-reinforced composite implant: early outcomes. Acta Neurochir 157, 681–687 (2015). https://doi.org/10.1007/s00701-015-2363-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00701-015-2363-2

Keywords

Navigation