Skip to main content

Advertisement

Log in

Follow-up and long-term outcome of nonfunctioning pituitary adenoma operated by transsphenoidal surgery with intraoperative high-field magnetic resonance imaging

  • Clinical Article - Brain Tumors
  • Published:
Acta Neurochirurgica Aims and scope Submit manuscript

Abstract

Background

Intraoperative MRI (iMRI) increases gross total resection (GTR) rates in transsphenoidal surgery; however, long-term follow-up data is lacking. The objective is to assess the outcome of patients with nonfunctioning pituitary adenomas (NFA) at a mean follow-up of > 5 years.

Methods

Patients with NFA operated in a single institution with resection control by a 1.5 T intraoperative magnetic resonance imaging (iMRI) scanner and no previous pituitary surgery were included. Microscopical transsphenoidal approaches with optional endoscopy were used. The iMRI was chosen for spacious suprasellar or retrosellar and/or invasive tumours. IMRI-scans were made if GTR or if nonresectable remnants were presumed. The patients had a full neuroradiological, endocrinological and ophthalmological follow-up at the institution.

Results

Eighty-five patients (67 % male;55 ± 14 years) with a follow-up of 5.6 ± 1.9 years were included. The initial GTR rate on iMRI was 44 %. In 83 %, further resections were possible, resulting in a final GTR rate of 66 %. In invasive tumours, the GTR rate was increased by 29 %. The detection of remnants by iMRI had high sensitivity and specificity (100 %), as opposed to endoscopy (21 %;78 %). During follow-up, four (7 %) tumours recurred and 14 (64 %) remnants grew. The recurrence and regrowth rate were 0.013 and 0.114 patients/years, respectively. Seventy-nine percent of the growing remnants were seen < 5 years postoperatively.

Conclusions

The use of iMRI for transsphenoidal resection leads to low recurrence rates. Even in case of invasive tumours, distinctly more patients show long tumour-free follow-ups. Tumour remnants detected by iMRI are at high risk to grow within 5 years after surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Abosch A, Tyrrell JB, Lamborn KR, Hannegan LT, Applebury CB, Wilson CB (1998) Transsphenoidal microsurgery for growth hormone-secreting pituitary adenomas: initial outcome and long-term results. J Clin Endocrinol Metab 83:3411–3418

    Article  CAS  PubMed  Google Scholar 

  2. Ahn JY, Jung JY, Kim J, Lee KS, Kim SH (2008) How to overcome the limitations to determine the resection margin of pituitary tumours with low-field intra-operative MRI during trans-sphenoidal surgery: usefulness of Gadolinium-soaked cotton pledgets. Acta Neurochir (Wien) 150:763–771, discussion 771

    Article  CAS  Google Scholar 

  3. Albayrak B, Samdani AF, Black PM (2004) Intra-operative magnetic resonance imaging in neurosurgery. Acta Neurochir (Wien) 146:543–556, discussion 557

    Article  CAS  Google Scholar 

  4. Arafah BM (1986) Reversible hypopituitarism in patients with large nonfunctioning pituitary adenomas. J Clin Endocrinol Metab 62:1173–1179

    Article  CAS  PubMed  Google Scholar 

  5. Barker FG 2nd, Klibanski A, Swearingen B (2003) Transsphenoidal surgery for pituitary tumors in the United States, 1996–2000: mortality, morbidity, and the effects of hospital and surgeon volume. J Clin Endocrinol Metab 88:4709–4719

    Article  CAS  PubMed  Google Scholar 

  6. Baskin DS, Boggan JE, Wilson CB (1982) Transsphenoidal microsurgical removal of growth hormone-secreting pituitary adenomas. A review of 137 cases. J Neurosurg 56:634–641

    Article  CAS  PubMed  Google Scholar 

  7. Baumann F, Schmid C, Bernays RL (2010) Intraoperative magnetic resonance imaging-guided transsphenoidal surgery for giant pituitary adenomas. Neurosurg Rev 33:83–90

    Article  PubMed  Google Scholar 

  8. Bellut D, Hlavica M, Muroi C, Woernle CM, Schmid C, Bernays RL (2012) Impact of intraoperative MRI-guided transsphenoidal surgery on endocrine function and hormone substitution therapy in patients with pituitary adenoma. Swiss Med Wkly 142:w13699

    PubMed  Google Scholar 

  9. Bellut D, Hlavica M, Schmid C, Bernays RL (2010) Intraoperative magnetic resonance imaging-assisted transsphenoidal pituitary surgery in patients with acromegaly. Neurosurg Focus 29:E9

    Article  PubMed  Google Scholar 

  10. Berg C, Meinel T, Lahner H, Mann K, Petersenn S (2010) Recovery of pituitary function in the late-postoperative phase after pituitary surgery: results of dynamic testing in patients with pituitary disease by insulin tolerance test 3 and 12 months after surgery. Eur J Endocrinol 162:853–859

  11. Berkmann S, Fandino J, Muller B, Kothbauer K, Henzen C, Landolt H (2012) Pituitary surgery: experience from a large network in Central Switzerland. Swiss medical weekly 142:0

  12. Berkmann S, Fandino J, Muller B, Remonda L, Landolt H (2012) Intraoperative MRI and endocrinological outcome of transsphenoidal surgery for non-functioning pituitary adenoma. Acta Neurochir (Wien) 154:639–647

    Article  Google Scholar 

  13. Berkmann S, Fandino J, Zosso S, Killer HE, Remonda L, Landolt H (2011) Intraoperative magnetic resonance imaging and early prognosis for vision after transsphenoidal surgery for sellar lesions. J Neurosurg 115:518–527

    Article  PubMed  Google Scholar 

  14. Berkmann S, Schlaffer S, Buchfelder M (2013) Tumor shrinkage after transsphenoidal surgery for nonfunctioning pituitary adenoma. J Neurosurg 119(6):1447–1452

    Article  PubMed  Google Scholar 

  15. Black PM, Moriarty T, Alexander E 3rd, Stieg P, Woodard EJ, Gleason PL, Martin CH, Kikinis R, Schwartz RB, Jolesz FA (1997) Development and implementation of intraoperative magnetic resonance imaging and its neurosurgical applications. Neurosurgery 41:831–842, discussion 842–835

    Article  CAS  PubMed  Google Scholar 

  16. Bohinski RJ, Warnick RE, Gaskill-Shipley MF, Zuccarello M, van Loveren HR, Kormos DW, Tew JM Jr (2001) Intraoperative magnetic resonance imaging to determine the extent of resection of pituitary macroadenomas during transsphenoidal microsurgery. Neurosurgery 49:1133–1143, discussion 1143–1134

    CAS  PubMed  Google Scholar 

  17. Bradley KJ, Wass JA, Turner HE (2003) Non-functioning pituitary adenomas with positive immunoreactivity for ACTH behave more aggressively than ACTH immunonegative tumours but do not recur more frequently. Clin Endocrinol (Oxf) 58:59–64

    Article  CAS  Google Scholar 

  18. Brochier S, Galland F, Kujas M, Parker F, Gaillard S, Raftopoulos C, Young J, Alexopoulou O, Maiter D, Chanson P (2010) Factors predicting relapse of nonfunctioning pituitary macroadenomas after neurosurgery: a study of 142 patients. Eur J Endocrinol 163:193–200

    Article  CAS  PubMed  Google Scholar 

  19. Buchfelder M, Schlaffer S-M (2012) Intraoperative magnetic resonance imaging during surgery for pituitary adenomas: pros and cons. Endocrine 42:483–495

    Article  CAS  PubMed  Google Scholar 

  20. Bulters DO, Shenouda E, Evans BT, Mathad N, Lang DA (2009) Visual recovery following optic nerve decompression for chronic compressive neuropathy. Acta Neurochir (Wien) 151:325–334

    Article  Google Scholar 

  21. Cappabianca P, Cavallo LM, Colao A, de Divitiis E (2002) Surgical complications associated with the endoscopic endonasal transsphenoidal approach for pituitary adenomas. J Neurosurg 97:293–298

    Article  PubMed  Google Scholar 

  22. Cho HY, Cho SW, Kim SW, Shin CS, Park KS, Kim SY (2010) Silent corticotroph adenomas have unique recurrence characteristics compared with other nonfunctioning pituitary adenomas. Clin Endocrinol (Oxf) 72:648–653

    Article  Google Scholar 

  23. Ciric I, Ragin A, Baumgartner C, Pierce D (1997) Complications of transsphenoidal surgery: results of a national survey, review of the literature, and personal experience. Neurosurgery 40:225–236, discussion 236–227

    Article  CAS  PubMed  Google Scholar 

  24. Coburger J, Konig R, Seitz K, Bazner U, Wirtz CR, Hlavac M (2013) Determining the utility of intraoperative magnetic resonance imaging for transsphenoidal surgery: a retrospective study. J Neurosurg 120(2):346–356

    Article  PubMed  Google Scholar 

  25. Cohen AR, Cooper PR, Kupersmith MJ, Flamm ES, Ransohoff J (1985) Visual recovery after transsphenoidal removal of pituitary adenomas. Neurosurgery 17:446–452

    Article  CAS  PubMed  Google Scholar 

  26. Colao A, Cerbone G, Cappabianca P, Ferone D, Alfieri A, Di Salle F, Faggiano A, Merola B, de Divitiis E, Lombardi G (1998) Effect of surgery and radiotherapy on visual and endocrine function in nonfunctioning pituitary adenomas. J Endocrinol Invest 21:284–290

    Article  CAS  PubMed  Google Scholar 

  27. Comtois R, Beauregard H, Somma M, Serri O, Aris-Jilwan N, Hardy J (1991) The clinical and endocrine outcome to trans-sphenoidal microsurgery of nonsecreting pituitary adenomas. Cancer 68:860–866

    Article  CAS  PubMed  Google Scholar 

  28. Darakchiev BJ, Tew JM Jr, Bohinski RJ, Warnick RE (2005) Adaptation of a standard low-field (0.3-T) system to the operating room: focus on pituitary adenomas. Neurosurg Clin N Am 16:155–164

    Article  PubMed  Google Scholar 

  29. De Witte O, Makiese O, Wikler D, Levivier M, Vandensteene A, Pandin P, Baleriaux D, Brotchi J (2005) Transsphenoidal approach with low field MRI for pituitary adenoma. Neurochirurgie 51:577–583

    Article  PubMed  Google Scholar 

  30. Dekkers OM, Pereira AM, Romijn JA (2008) Treatment and follow-up of clinically nonfunctioning pituitary macroadenomas. J Clin Endocrinol Metab 93:3717–3726

    Article  CAS  PubMed  Google Scholar 

  31. Dort JC, Sutherland GR (2001) Intraoperative magnetic resonance imaging for skull base surgery. Laryngoscope 111:1570–1575

    Article  CAS  PubMed  Google Scholar 

  32. Ebersold MJ, Quast LM, Laws ER Jr, Scheithauer B, Randall RV (1986) Long-term results in transsphenoidal removal of nonfunctioning pituitary adenomas. J Neurosurg 64:713–719

    Article  CAS  PubMed  Google Scholar 

  33. Fahlbusch R, Ganslandt O, Buchfelder M, Schott W, Nimsky C (2001) Intraoperative magnetic resonance imaging during transsphenoidal surgery. J Neurosurg 95:381–390

    Article  CAS  PubMed  Google Scholar 

  34. Fahlbusch R, Keller B, Ganslandt O, Kreutzer J, Nimsky C (2005) Transsphenoidal surgery in acromegaly investigated by intraoperative high-field magnetic resonance imaging. Eur J Endocrinol 153:239–248

    Article  CAS  PubMed  Google Scholar 

  35. Faria MA Jr, Tindall GT (1982) Transsphenoidal microsurgery for prolactin-secreting pituitary adenomas. J Neurosurg 56:33–43

    Article  PubMed  Google Scholar 

  36. Fatemi N, Dusick JR, Mattozo C, McArthur DL, Cohan P, Boscardin J, Wang C, Swerdloff RS, Kelly DF (2008) Pituitary hormonal loss and recovery after transsphenoidal adenoma removal. Neurosurgery 63:709–718, discussion 718–709

    Article  PubMed  Google Scholar 

  37. Findlay G, McFadzean RM, Teasdale G (1983) Recovery of vision following treatment of pituitary tumours; application of a new system of assessment to patients treated by transsphenoidal operation. Acta Neurochir (Wien) 68:175–186

    Article  CAS  Google Scholar 

  38. Freda PU, Beckers AM, Katznelson L, Molitch ME, Montori VM, Post KD, Vance ML, Endocrine S (2011) Pituitary incidentaloma: an endocrine society clinical practice guideline. J Clin Endocrinol Metab 96:894–904

    Article  CAS  PubMed  Google Scholar 

  39. Gerlach R, du Mesnil de Rochemont R, Gasser T, Marquardt G, Reusch J, Imoehl L, Seifert V (2008) Feasibility of Polestar N20, an ultra-low-field intraoperative magnetic resonance imaging system in resection control of pituitary macroadenomas: lessons learned from the first 40 cases. Neurosurgery 63:272–284, discussion 284–275

    Article  PubMed  Google Scholar 

  40. Greenman Y, Stern N (2009) How should a nonfunctioning pituitary macroadenoma be monitored after debulking surgery? Clin Endocrinol (Oxf) 70:829–832

    Article  Google Scholar 

  41. Hardy J, Wigser SM (1965) Transsphenoidal surgery of pituitary fossa tumors with televised radiofluoroscopic control. J Neurosurg 23:612–619

    Article  CAS  PubMed  Google Scholar 

  42. Harris PE, Afshar F, Coates P, Doniach I, Wass JA, Besser GM, Grossman A (1989) The effects of transsphenoidal surgery on endocrine function and visual fields in patients with functionless pituitary tumours. Q J Med 71:417–427

    CAS  PubMed  Google Scholar 

  43. Hlavica M, Bellut D, Lemm D, Schmid C, Bernays RL (2013) Impact of ultra-low-field intraoperative magnetic resonance imaging on extent of resection and frequency of tumor recurrence in 104 surgically treated nonfunctioning pituitary adenomas. World Neurosurg 79:99–109

    Article  PubMed  Google Scholar 

  44. Jane JA Jr, Laws ER Jr (2010) Endoscopy versus MR imaging. J Neurosurg 112:734, discussion 735

    Article  PubMed  Google Scholar 

  45. Jones J, Ruge J (2007) Intraoperative magnetic resonance imaging in pituitary macroadenoma surgery: an assessment of visual outcome. Neurosurg Focus 23:E12

    Article  PubMed  Google Scholar 

  46. Karavitaki N (2012) Prevalence and incidence of pituitary adenomas. Ann Endocrinol (Paris) 73:79–80

    Article  Google Scholar 

  47. Knosp E, Steiner E, Kitz K, Matula C (1993) Pituitary adenomas with invasion of the cavernous sinus space: a magnetic resonance imaging classification compared with surgical findings. Neurosurgery 33:610–617, discussion 617–618

    Article  CAS  PubMed  Google Scholar 

  48. Lang MJ, Kelly JJ, Sutherland GR (2011) A moveable 3-Tesla intraoperative magnetic resonance imaging system. Neurosurgery 68:168–179

    Article  PubMed  Google Scholar 

  49. Laws ER Jr, Ebersold MJ, Piegras DG (1982) The results of transsphenoidal surgery in specific clinical entities. In: Laws ER, Randall RV, Kern EB et al (eds) Management of Pituitary Adenomas and Related Lesions with Emphasis on Transsphenoidal Microsurgery. Appleton-Century-Crofts, New York, pp 277–305

    Google Scholar 

  50. Laws ER Jr, Trautmann JC, Hollenhorst RW Jr (1977) Transsphenoidal decompression of the optic nerve and chiasm. Visual results in 62 patients. J Neurosurg 46:717–722

    Article  PubMed  Google Scholar 

  51. Lennerstrand G (1983) Visual recovery after treatment for pituitary adenoma. Acta Ophthalmol (Copenh) 61:1104–1117

    Article  CAS  Google Scholar 

  52. Lewin JS, Nour SG, Meyers ML, Metzger AK, Maciunas RJ, Wendt M, Duerk JL, Oppelt A, Selman WR (2007) Intraoperative MRI with a rotating, tiltable surgical table: a time use study and clinical results in 122 patients. AJR Am J Roentgenol 189:1096–1103

    Article  PubMed  Google Scholar 

  53. Littley MD, Shalet SM, Beardwell CG, Ahmed SR, Applegate G, Sutton ML (1989) Hypopituitarism following external radiotherapy for pituitary tumours in adults. Q J Med 70:145–160

    CAS  PubMed  Google Scholar 

  54. Losa M, Franzin A, Mangili F, Terreni MR, Barzaghi R, Veglia F, Mortini P, Giovanelli M (2000) Proliferation index of nonfunctioning pituitary adenomas: correlations with clinical characteristics and long-term follow-up results. Neurosurgery 47:1313–1318, discussion 1318–1319

    Article  CAS  PubMed  Google Scholar 

  55. Lundin P, Pedersen F (1992) Volume of pituitary macroadenomas: assessment by MRI. J Comput Assist Tomogr 16:519–528

    Article  CAS  PubMed  Google Scholar 

  56. Marazuela M, Astigarraga B, Vicente A, Estrada J, Cuerda C, Garcia-Uria J, Lucas T (1994) Recovery of visual and endocrine function following transsphenoidal surgery of large nonfunctioning pituitary adenomas. J Endocrinol Invest 17:703–707

    Article  CAS  PubMed  Google Scholar 

  57. Marcus M, Vitale S, Calvert PC, Miller NR (1991) Visual parameters in patients with pituitary adenoma before and after transsphenoidal surgery. Aust N Z J Ophthalmol 19:111–118

    Article  CAS  PubMed  Google Scholar 

  58. Martin CH, Schwartz R, Jolesz F, Black PM (1999) Transsphenoidal resection of pituitary adenomas in an intraoperative MRI unit. Pituitary 2:155–162

    Article  CAS  PubMed  Google Scholar 

  59. McPherson CM, Bohinski RJ, Dagnew E, Warnick RE, Tew JM (2003) Tumor resection in a shared-resource magnetic resonance operating room: experience at the University of Cincinnati. Acta Neurochir Suppl 85:39–44

    Article  CAS  PubMed  Google Scholar 

  60. Meng XH, Xu BN, Wei SB, Zhou T, Chen XL, Yu XG, Zhou DB, Tong HY, Zhang JS, Zhao Y, Hou YZ (2011) High-field intraoperative magnetic resonance imaging suite with neuronavigation system: implementation and preliminary experience in the pituitary adenoma operation with transsphenoidal approach. Zhonghua Wai Ke Za Zhi 49:703–706

    PubMed  Google Scholar 

  61. Nelson AT Jr, Tucker HS Jr, Becker DP (1984) Residual anterior pituitary function following transsphenoidal resection of pituitary macroadenomas. J Neurosurg 61:577–580

    Article  PubMed  Google Scholar 

  62. Netuka D, Masopust V, Belsan T, Kramar F, Benes V (2011) One year experience with 3.0 T intraoperative MRI in pituitary surgery. Acta Neurochir Suppl 109:157–159

  63. Nimsky C, Ganslandt O, Fahlbusch R (2004) Functional neuronavigation and intraoperative MRI. Adv Tech Stand Neurosurg 29:229–263

    CAS  PubMed  Google Scholar 

  64. Nimsky C, Ganslandt O, Fahlbusch R (2005) Comparing 0.2 tesla with 1.5 tesla intraoperative magnetic resonance imaging analysis of setup, workflow, and efficiency. Acad Radiol 12:1065–1079

    Article  PubMed  Google Scholar 

  65. Nimsky C, Ganslandt O, Hofmann B, Fahlbusch R (2003) Limited benefit of intraoperative low-field magnetic resonance imaging in craniopharyngioma surgery. Neurosurgery 53:72–80, discussion 80–71

    Article  PubMed  Google Scholar 

  66. Nimsky C, Ganslandt O, Von Keller B, Romstock J, Fahlbusch R (2004) Intraoperative high-field-strength MR imaging: implementation and experience in 200 patients. Radiology 233:67–78

    Article  PubMed  Google Scholar 

  67. Nimsky C, von Keller B, Ganslandt O, Fahlbusch R (2006) Intraoperative high-field magnetic resonance imaging in transsphenoidal surgery of hormonally inactive pituitary macroadenomas. Neurosurgery 59:105–114, discussion 105–114

    Article  PubMed  Google Scholar 

  68. Noh TW, Jeong HJ, Lee MK, Kim TS, Kim SH, Lee EJ (2009) Predicting recurrence of nonfunctioning pituitary adenomas. J Clin Endocrinol Metab 94:4406–4413

    Article  CAS  PubMed  Google Scholar 

  69. Nomikos P, Ladar C, Fahlbusch R, Buchfelder M (2004) Impact of primary surgery on pituitary function in patients with non-functioning pituitary adenomas – a study on 721 patients. Acta Neurochir (Wien) 146:27–35

    Article  CAS  Google Scholar 

  70. Orija IB, Weil RJ, Hamrahian AH (2012) Pituitary incidentaloma. Best Pract Res Clin Endocrinol Metab 26:47–68

    Article  PubMed  Google Scholar 

  71. Pamir MN (2011) 3 T ioMRI: the Istanbul experience. Acta Neurochir Suppl 109:131–137

  72. Pamir MN, Peker S, Ozek MM, Dincer A (2006) Intraoperative MR imaging: preliminary results with 3 tesla MR system. Acta Neurochir Suppl 98:97–100

    Article  CAS  PubMed  Google Scholar 

  73. Pandin P, Dewitte O (2007) Open low-field intraoperative MRI for transsphenoidal pituitary surgery. Anesth Analg 105:886

    Article  PubMed  Google Scholar 

  74. Pergolizzi RS Jr, Nabavi A, Schwartz RB, Hsu L, Wong TZ, Martin C, Black PM, Jolesz FA (2001) Intra-operative MR guidance during trans-sphenoidal pituitary resection: preliminary results. J Magn Reson Imaging 13:136–141

    Article  PubMed  Google Scholar 

  75. Peter M, De Tribolet N (1995) Visual outcome after transsphenoidal surgery for pituitary adenomas. Br J Neurosurg 9:151–157

    Article  CAS  PubMed  Google Scholar 

  76. Powell M (1995) Recovery of vision following transsphenoidal surgery for pituitary adenomas. Br J Neurosurg 9:367–373

    Article  CAS  PubMed  Google Scholar 

  77. Ramirez C, Cheng S, Vargas G, Asa SL, Ezzat S, Gonzalez B, Cabrera L, Guinto G, Mercado M (2012) Expression of Ki-67, PTTG1, FGFR4, and SSTR 2, 3, and 5 in nonfunctioning pituitary adenomas: a high throughput TMA, immunohistochemical study. J Clin Endocrinol Metab 97:1745–1751

    Article  CAS  PubMed  Google Scholar 

  78. Reddy R, Cudlip S, Byrne JV, Karavitaki N, Wass JA (2011) Can we ever stop imaging in surgically treated and radiotherapy-naive patients with non-functioning pituitary adenoma? Eur J Endocrinol 165:739–744

    Article  CAS  PubMed  Google Scholar 

  79. Roelfsema F, Biermasz NR, Pereira AM (2012) Clinical factors involved in the recurrence of pituitary adenomas after surgical remission: a structured review and meta-analysis. Pituitary 15:71–83

    Article  PubMed Central  PubMed  Google Scholar 

  80. Sandeman D, Moufid A (1998) Interactive image-guided pituitary surgery. An experience of 101 procedures. Neurochirurgie 44:331–338

    CAS  PubMed  Google Scholar 

  81. Schulder M, Jacobs A, Carmel PW (2001) Intraoperative MRI and adjuvant radiosurgery. Stereotact Funct Neurosurg 76:151–158

    Article  CAS  PubMed  Google Scholar 

  82. Schwartz TH, Stieg PE, Anand VK (2006) Endoscopic transsphenoidal pituitary surgery with intraoperative magnetic resonance imaging. Neurosurgery 58:ONS44–ONS51, discussion ONS44-51

    Article  PubMed  Google Scholar 

  83. Sheehan JP, Starke RM, Mathieu D, Young B, Sneed PK, Chiang VL, Lee JY, Kano H, Park KJ, Niranjan A, Kondziolka D, Barnett GH, Rush S, Golfinos JG, Lunsford LD (2013) Gamma Knife radiosurgery for the management of nonfunctioning pituitary adenomas: a multicenter study. J Neurosurg 119:446–456

    Article  PubMed  Google Scholar 

  84. Shou XF, Li SQ, Wang YF, Zhao Y, Jia PF, Zhou LF (2005) Treatment of pituitary adenomas with a transsphenoidal approach. Neurosurgery 56:249–256, discussion 249–256

    Article  PubMed  Google Scholar 

  85. Shults WT, Miller NR (1998) Compressive optic neuropathies. In: Miller NR, Newman NJ (eds) Walsh & Hoyt’s Clinical Neuroophthalmology, 5th edn. Williams & Wilkins, Baltimore, pp 657–658

    Google Scholar 

  86. Steinmeier R, Fahlbusch R, Ganslandt O, Nimsky C, Buchfelder M, Kaus M, Heigl T, Lenz G, Kuth R, Huk W (1998) Intraoperative magnetic resonance imaging with the magnetom open scanner: concepts, neurosurgical indications, and procedures: a preliminary report. Neurosurgery 43:739–747, discussion 747–738

    Article  CAS  PubMed  Google Scholar 

  87. Szerlip NJ, Zhang YC, Placantonakis DG, Goldman M, Colevas KB, Rubin DG, Kobylarz EJ, Karimi S, Girotra M, Tabar V (2011) Transsphenoidal resection of sellar tumors using high-field intraoperative magnetic resonance imaging. Skull base : official journal of North American Skull Base Society … [et al.] 21:223–232

  88. Theodosopoulos PV, Leach J, Kerr RG, Zimmer LA, Denny AM, Guthikonda B, Froelich S, Tew JM (2010) Maximizing the extent of tumor resection during transsphenoidal surgery for pituitary macroadenomas: can endoscopy replace intraoperative magnetic resonance imaging? J Neurosurg 112:736–743

    Article  PubMed  Google Scholar 

  89. Trautmann JC, Laws ER Jr (1983) Visual status after transsphenoidal surgery at the Mayo Clinic, 1971–1982. Am J Ophthalmol 96:200–208

    Article  CAS  PubMed  Google Scholar 

  90. members of H, Trouillas J, Roy P, Sturm N, Dantony E, Cortet-Rudelli C, Viennet G, Bonneville JF, Assaker R, Auger C, Brue T, Cornelius A, Dufour H, Jouanneau E, Francois P, Galland F, Mougel F, Chapuis F, Villeneuve L, Maurage CA, Figarella-Branger D, Raverot G, Barlier A, Bernier M, Bonnet F, Borson-Chazot F, Brassier G, Caulet-Maugendre S, Chabre O, Chanson P, Cottier JF, Delemer B, Delgrange E, Di Tommaso L, Eimer S, Gaillard S, Jan M, Girard JJ, Lapras V, Loiseau H, Passagia JG, Patey M, Penfornis A, Poirier JY, Perrin G, Tabarin A (2013) A new prognostic clinicopathological classification of pituitary adenomas: a multicentric case–control study of 410 patients with 8 years post-operative follow-up. Acta Neuropathol 126:123–135

  91. Walker DG, Ohaegbulam C, Black PM (2002) Frameless stereotaxy as an alternative to fluoroscopy for transsphenoidal surgery: use of the InstaTrak-3000 and a novel headset. J Clin Neurosci 9:294–297

    Article  PubMed  Google Scholar 

  92. Webb SM, Rigla M, Wagner A, Oliver B, Bartumeus F (1999) Recovery of hypopituitarism after neurosurgical treatment of pituitary adenomas. J Clin Endocrinol Metab 84:3696–3700

    Article  CAS  PubMed  Google Scholar 

  93. Wu JS, Shou XF, Yao CJ, Wang YF, Zhuang DX, Mao Y, Li SQ, Zhou LF (2009) Transsphenoidal pituitary macroadenomas resection guided by PoleStar N20 low-field intraoperative magnetic resonance imaging: comparison with early postoperative high-field magnetic resonance imaging. Neurosurgery 65:63–70, discussion 70–61

    Article  PubMed  Google Scholar 

Download references

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sven Berkmann.

Additional information

Comment

This paper has an important message: residual adenomas from transsphenoidal surgery recur whether a microscope or an endoscope is used, and if one uses an iMRI, there will be fewer residuals in one's personal series, and thus fewer recurrences. Many experienced transsphenoidal surgeons have found the extra time required for iMRI irksome and therefore not worth it. This paper suggests they should try iMRI again.

Michael Powell

London,UK

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berkmann, S., Schlaffer, S., Nimsky, C. et al. Follow-up and long-term outcome of nonfunctioning pituitary adenoma operated by transsphenoidal surgery with intraoperative high-field magnetic resonance imaging. Acta Neurochir 156, 2233–2243 (2014). https://doi.org/10.1007/s00701-014-2210-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00701-014-2210-x

Keywords

Navigation