Skip to main content

Advertisement

Log in

Evaluation of cerebral aneurysm wall thickness in experimental aneurysms: Comparison of 3T-MR imaging with direct microscopic measurements

  • Experimental Research - Vascular
  • Published:
Acta Neurochirurgica Aims and scope Submit manuscript

Abstract

Background

Thin aneurysm wall thickness (AWT) is thought to portend an elevated risk of intracranial aneurysm rupture. Magnetic resonance imaging (MRI) is biased by AWT overestimations. Previously, this suspected bias has been qualitatively described but never quantified. We aimed to quantify the overestimation of AWT by MRI when compared to the gold standard of AWT as measured by light microscopy of fresh aneurysm specimens (without any embedding procedure). This analysis should help to define the clinical potential of MRI estimates of AWT.

Methods

3-Tesla (3T) MRI (contrast-enhanced T1 Flash sequences; resolution: 0.4x0.4x1.5 mm3) was performed in 13 experimental aneurysms. After MR acquisition, the aneurysms were retrieved, longitudinally sectioned and calibrated micrographs were obtained immediately. AWT at the dome, AWT at the neck and parent vessel wall thickness (PVT) were measured on precisely correlated MR-images and histologic micrographs by blinded independent investigators. Parameters were statistically compared (Wilcoxon test, Spearman's correlation).

Results

AWT was assessed and reliably measured using MRI. Interobserver variability was not significant for either method. MR overestimation was only significant below the image resolution threshold: AWT at the dome (0.24 ± 0.06 mm vs. MR 0.30 ± 0.08 mm; p = 0.0078; R = 0.6125), AWT at the neck (0.25 ± 0.07 mm vs. MR 0.29 ± 0.07 mm; p = 0.0469; R = 0.7451), PVT (0.46 ± 0.06 mm vs. MR 0.48 ± 0.06 mm; p = 0.5; R = 0.8568).

Conclusion

In this experimental setting, MR overestimations were minimal (mean 0.02 mm) above the image resolution threshold. When AWT is classified in ranges defined by the MR resolution threshold, clinical usage may be beneficial. Further quantitative and comparative experimental and human studies are warranted to confirm these findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Abruzzo T, Shengelaia G, Dawson R, Owens D, Cawley C, Gravanis M (1998) Histologic and morphologic comparison of experimental aneurysms with human intracranial aneurysms. AJNR:1309–1314

  2. Boussel L, Wintermark M, Martin A, Dispensa B, VanTijen R, Leach J, Rayz V, Acevedo-Bolton G, Lawton M, Higashida R, Smith W, Young W, Saloner D (2008) Monitoring serial change in the lumen and outer wall of vertebrobasilar aneurysms. AJNR 29:259–264

    Article  CAS  PubMed  Google Scholar 

  3. Bouzeghrane F, Naggara O, Kallmes D, Berenstein A, Raymond J, Centres atICoN (2010) In vivo experimental intracranial aneurysm models: a systematic review. AJNR 31:418–423

    Article  CAS  PubMed  Google Scholar 

  4. Canham P, Finlay H, Tong S (1996) Stereological analysis of the layered collagen of human intracranial aneurysms. J Microsc 183:170–180

    Article  CAS  PubMed  Google Scholar 

  5. Cebral J, Mut F, Weir J, Putman C (2011) Quantitative characterization of the hemodynamic environment in ruptured and unruptured brain aneurysms. AJNR 32:145–151

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Cloft HJ, Altes TA, Marx WF, Raible RJ, Hudson SB, Helm GA, Mandell JW, Jensen ME, Dion JE, Kallmes DF (1999) Endovascular creation of an in vivo bifurcation aneurysm model in rabbits. Radiology 213:223–228

    Article  CAS  PubMed  Google Scholar 

  7. Costalat V, Sanchez M, Ambard D, Thines L, Lonjon N, Nicoud F, Brunel H, Lejeune J, Dufour H, Bouillot P, Lhaldky J, Kouri K, Segnarbieux F, Maurage C, Lobotesis K, Villa-Uriol M, Zhang C, Frangi A, Mercier G, Bonafé A, Sarry L, Jourdan F (2011) Biomechanical wall properties of human intracranial aneurysms resected following surgical clipping (IRRAs Project). J Biomech 44:2685–2691

    Article  CAS  PubMed  Google Scholar 

  8. Frösen J, Piippo A, Paetau A, Kangasniemi M, Niemelä M, Hernesniemi J, Jääskeläinen J (2004) Remodeling of saccular cerebral artery aneurysm wall is associated with rupture: histological analysis of 24 unruptured and 42 ruptured cases. Stroke 35:2287–2293

    Article  PubMed  Google Scholar 

  9. Griffith T (1994) Modulation of blood flow and tissue perfusion by endothelium-derived relaxing factor. Exp Physiolo 79:873–913

    CAS  Google Scholar 

  10. Kallmes DF, Helm GA, Hudson SB, Altes TA, Do HM, Mandell JW, Cloft HJ (1999) Histologic evaluation of platinum coil embolization in an aneurysm model in rabbits. Radiology 213:217–222

    Article  CAS  PubMed  Google Scholar 

  11. Kataoka K, Taneda M, Asai T, Kinoshita A, Ito M, Kuroda R (1999) Structural fragility and inflammatory response of ruptured cerebral aneurysms. A comparative study between ruptured and unruptured cerebral aneurysms. Stroke 30:1396–1401

    Article  CAS  PubMed  Google Scholar 

  12. Lall R, Eddleman C, Bendok B, Batjer H (2009) Unruptured intracranial aneurysms and the assessment of rupture risk based on anatomical and morphologic factors: sifting through the sands of data. Neurosurg Focus 26(E2):1–5

    Google Scholar 

  13. Marbacher S, Erhardt S, Ai Schläppi J, Coluccia D, Remonda L, Fandino J, Sherif C (2011) Complex Bi-Lobular, Bi-Saccular, and Broad-Necked Microsurgical Aneurysms Formation in the Rabbit Bifurcation Model for the Study of Upcoming Endovascular Techniques. AJNR 32:772–777

    Article  CAS  PubMed  Google Scholar 

  14. Marbacher S, Tastan I, Neuschmelting V, Erhardt S, Coluccia D, Sherif C, Remonda L, Fandino J (2012) Long-Term Patency of Complex Bilobular, Bisaccular, and Broad-Neck Aneurysms in the Rabbit Microsurgical Venous Pouch Bifurcation Model. Neurol research 34:538–546

    Article  Google Scholar 

  15. Matouk C, Mandell D, Günel M, Bulsara K, Malhotra A, Hebert R, Johnson M, Mikulis D, Minja F (2013) Vessel Wall Magnetic Resonance Imaging Identifies the Site-of-rupture in Patients with Multiple Intracranial Aneurysms: Proof-of-principle. Neurosurg 2012

  16. Naggara O, White P, Guilbert F, Roy D, Weill A, Raymond J (2010) Endovascular treatment of intracranial unruptured aneurysms: systematic review and meta-analysis of the literature on safety and efficacy. Radiology 256:887–897

    Article  PubMed  Google Scholar 

  17. Park J, Lee C, Sim K, Huh J, Park J (2009) Imaging of the Walls of Saccular Cerebral Aneurysms With Double Inversion Recovery Black-Blood Sequence. J Magn Reson Imaging 30:1179–1183

    Article  PubMed  Google Scholar 

  18. Qiao Y, Steinman D, Qin Q, Etesami M, Schar M, Astor B, Wasserman B (2011) Intracranial Arterial Wall Imaging Using Three-Dimensional High Isotropic Resolution Black Blood MRI at 3.0 Tesla. J Magn Reson Imaging 34:22–30

    Article  PubMed  Google Scholar 

  19. Sherif C, Fandino J, Erhardt S, Di Ieva A, Killer M, Kleinpeter G, Marbacher S (2011) Microsurgical Arterial-bifurcation Aneurysms in the Rabbit Model: Technical Aspects. J Vis Exp 51

  20. Sherif C, Marbacher S, Erhardt S, Fandino J (2011) Improved microsurgical creation of venous-pouch arterial-bifurcation aneurysms in rabbits. AJNR 32:165–169

    Article  CAS  PubMed  Google Scholar 

  21. Sherif C, Marbacher S, Fandino J (2009) High-resolution three-dimensional 3 T magnetic resonance angiography for the evaluation of experimental aneurysms in the rabbit. Neurol research 31:869–872

    Article  Google Scholar 

  22. Sherif C, Plenk H (2011) Quantitative angiographic and histopathologic evaluation of experimental aneurysms. AJNR 32:E33–E34

    Article  CAS  PubMed  Google Scholar 

  23. Stehbens W (1975) Ultrastructure of aneurysms. Arch Neurol 32:798–807

    Article  CAS  PubMed  Google Scholar 

  24. Stehbens W (1985) The ultrastructure of experimental aneurysms in rabbits. Pathology 17:87–95

    Article  CAS  PubMed  Google Scholar 

  25. Stehbens W (2000) Histologic and Morphologic Comparison of Experimental Aneurysms with Human Intracranial Aneurysms. AJNR 21:1769–1773

    CAS  PubMed  Google Scholar 

  26. Stehbens WE (1981) Chronic changes in experimental saccular and fusiform aneurysms in rabbits. Arch Pathol Lab Med 105:603–607

    CAS  PubMed  Google Scholar 

  27. Steinman D, Antiga L, Wasserman B (2010) Overestimation of Cerebral Aneurysm Wall Thickness by Black Blood MRI? J Magn Reson Imaging 31:766

    Article  PubMed  Google Scholar 

  28. Swartz R, Bhuta S, Farb R, Agid R, Willinsky R, terBrugge K, Butany J, Wasserman B, Johnstone D, Silver F, Mikulis D (2009) Intracranial arterial wall imaging using high-resolution 3-tesla contrast-enhanced MRI. Neurology 72:627–634

    Article  CAS  PubMed  Google Scholar 

  29. Tulamo R, Frösen J, Junnikkakala S, Pateau A, Kangasniemi M, Niemelä M, Jääskeläinen J, Jokitalo E, Karatas A, Hernesniemi J, Meri S (2006) Complement activation associates with saccular cerebral aneurysm wall degeneration and rupture. Neurosurg 59:1069–1077

    Google Scholar 

  30. van der Kolk A, Zwanenburg J, Brundel M, Biessels G, Visser F, Luijten P, Hendrikse J (2011) Intracranial Vessel Wall Imaging at 7.0-T MRI. Stroke 42:2478–2484

    Article  PubMed  Google Scholar 

  31. Vlak M, Algra A, Brandenburg R, Rinkel G (2011) Prevalence of unruptured intracranial aneurysms, with emphasis on sex, age, comorbidity, country, and time period: a systematic review and meta-analysis. Lancet Neurol 10:626–636

    Article  PubMed  Google Scholar 

  32. Watton P, Selimovic A, Raberger N, Huang P, Holzapfel G, Ventikos Y (2011) Modelling evolution and the evolving mechanical environment of saccular cerebral aneurysms. Biomech Model Mechanobiol 10:109–132

    Article  CAS  PubMed  Google Scholar 

  33. Wermer M, van der Schaaf I, Algra A, Rinkel G (2007) Risk of rupture of unruptured intracranial aneurysms in relation to patient and aneurysm characteristics: an updated meta-analysis. Stroke 38:1404–1410

    Article  PubMed  Google Scholar 

  34. Whittaker P, Schwab M, Canham P (1988) The molecular organization of collagen in saccular aneurysms assessed by polarized light microscopy. Connect Tissue Res 17:43–54

    Article  CAS  PubMed  Google Scholar 

  35. Wiebers D, Whisnant J, Forbes G (1998) For the International Study of Unruptured Intracranial Aneurysm Investigators. Unruptured intracranial aneurysms —risk of rupture and risks of surgical intervention. N Engl J Med 339:1725–1733

    Article  Google Scholar 

Download references

Acknowledgment

This study was funded by the Medical Scientific Fund of the Mayor of the City of Vienna. Sherif C. and Mach G. are shareholders of NVtec. Ltd., Vienna, Austria. The other authors have no industrial affiliations or financial interests.

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Camillo Sherif.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sherif, C., Kleinpeter, G., Mach, G. et al. Evaluation of cerebral aneurysm wall thickness in experimental aneurysms: Comparison of 3T-MR imaging with direct microscopic measurements. Acta Neurochir 156, 27–34 (2014). https://doi.org/10.1007/s00701-013-1919-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00701-013-1919-2

Keywords

Navigation