Skip to main content

Advertisement

Log in

Circulatory characteristics of normovolemia and normotension therapy after subarachnoid hemorrhage, focusing on pulmonary edema

  • Clinical Article
  • Published:
Acta Neurochirurgica Aims and scope Submit manuscript

Abstract

Background and purpose

Cardiopulmonary complications are common after subarachnoid hemorrhage (SAH), and include pulmonary edema (PE). The purpose of this study was to investigate circulatory characteristics of normovolemia and normotension therapy after SAH using pulse contour analysis, and to reveal the mechanisms of PE after SAH.

Methods

Pulse contour analysis was performed from day 3 until day 12 after the onset of SAH in 49 patients.

Results

Global end-diastolic volume index (GEDI) was normal, although net water balance was estimated to be negative and central venous pressure (CVP) was low in all patients. Seven patients (14 %) suffered from pulmonary edema. Cardiac function index (CFI) and global ejection fraction (GEF) were lower in patients with pulmonary edema (PE group) than in patients without PE (non-PE group) throughout the study period (CFI, P≤0.0119; GEF, P≤0.0348). The PE group showed higher GEDI from days 7 to 10, and higher extravascular lung water index (ELWI) throughout the entire study period compared to the non-PE group (GEDI, P≤0.0094; ELWI, P≤0.0077).

Conclusions

The appropriate preload was kept despite negative net water balance and low CVP. PE after SAH was biphasic, with cardiogenic PE caused by low cardiac contractility immediately after SAH, and hydrostatic PE caused by low cardiac contractility and hypervolemia on and after day 7 of SAH. Pulse contour analysis was useful to monitor this unique circulatory change and effective for detecting cardiopulmonary complications after SAH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ashrafian H, Williams L, Frenneaux MP (2008) The pathophysiology of heart failure: a tale of two old paradigms revised. Clin Med 8:192–197

    PubMed  Google Scholar 

  2. Awad IA, Carter LP, Spetzler RF, Medina M, Williams FC Jr (1987) Clinical vasospasm after subarachnoid hemorrhage: response to hypervolemic hemodilution and arterial hypertension. Stroke 18:365–372

    Article  PubMed  CAS  Google Scholar 

  3. Baumann A, Audibert G, McDonnell J, Mertes PM (2007) Neurogenic pulmonary edema. Acta Anaesthesiol Scand 51:447–455

    Article  PubMed  CAS  Google Scholar 

  4. Bernard GR, Artigas A, Brigham KL, Carlet J, Falke K, Hudson L, Lamy M, Legall JR, Morris A, Spragg R (1994) The American-European Consensus Conference on ARDS. Definitions, mechanisms, relevant outcomes, and clinical trial coordination. Am J Respir Crit Care Med 149:818–824

    PubMed  CAS  Google Scholar 

  5. Boussat S, Jacques T, Levy B, Laurent E, Gache A, Capellier G, Neidhardt A (2002) Intravascular volume monitoring and extravascular lung water in septic patients with pulmonary edema. Intensive Care Med 28:712–718

    Article  PubMed  Google Scholar 

  6. Combes A, Berneau JB, Luyt CE, Trouillet JL (2004) Estimation of left ventricular systolic function by single transpulmonary thermodilution. Intensive Care Med 30:1377–1383

    PubMed  Google Scholar 

  7. Fisher CM, Kistler JP, Davis JM (1980) Relation of cerebral vasospasm to subarachnoid hemorrhage visualized by computerized tomographic scanning. Neurosurgery 6:1–9

    Article  PubMed  CAS  Google Scholar 

  8. Friedman JA, Pichelmann MA, Piepgras DG, Mciver JI, Toussaint LG 3rd, McClelland RL, Nichols DA, Meyer FB, Atkinson JL, Wijdicks EF (2003) Pulmonary complications of aneurysmal subarachnoid hemorrhage. Neurosurgery 52:1025–1031

    Article  PubMed  Google Scholar 

  9. Goepfert MS, Reuter DA, Akyol D, Lamm P, Kilger E, Goetz AE (2007) Goal-directed fluid management reduces vasopressor and catecholamine use in cardiac surgery patients. Intensive Care Med 33:96–103

    Article  PubMed  Google Scholar 

  10. Hunt WE, Kosnik EJ (1974) Timing and perioperative care in intracranial aneurysm surgery. Clin Neurosurg 21:79–89

    PubMed  CAS  Google Scholar 

  11. Isakow W, Schuster DP (2006) Extravascular lung water measurements and hemodynamic monitoring in the critically ill: bedside alternatives to the pulmonary artery catheter. Am J Physiol Lung Cell Mol Physiol 291:L1118–L1131

    Article  PubMed  CAS  Google Scholar 

  12. Isotani E, Suzuki R, Tomita K, Hokari M, Monma S, Marumo F, Hirakawa K (1994) Alterations in plasma concentrations of natriuretic peptides and antidiuretic hormone after subarachnoid hemorrhage. Stroke 25:2198–2203

    Article  PubMed  CAS  Google Scholar 

  13. Jennett B, Bond M (1975) Assessment of outcome after severe brain damage. Lancet 7905:480–484

    Article  Google Scholar 

  14. Juntilla EK, Koskenkari JK, Ohtonen PP, Ala-Kokko TI (2011) Uncalibrated arterial pressure waveform analysis for cardiac output monitoring is biased by low peripheral resistance in patients with intracranial haemorrhage. Br J Anaesth 107:581–586

    Article  Google Scholar 

  15. Kassel NF, Peerless SJ, Durward QJ, Beck DW, Drake CG, Adams HP (1982) Treatment of ischemic deficits from vasospasm with intravascular volume expansion and induced arterial hypertension. Neurosurgery 11:337–343

    Article  Google Scholar 

  16. Kosnik EJ, Hunt WE (1976) Postoperative hypertension in the management of patients with intracranial arterial aneurysms. J Neurosurg 45:148–154

    Article  PubMed  CAS  Google Scholar 

  17. Lennihan L, Mayer SA, Fink ME, Beckford A, Paik MC, Zhang H, Wu YC, Klebanoff LM, Raps EC, Solomon RA (2000) Effect of hypervolemic therapy on cerebral blood flow after subarachnoid hemorrhage: a randomized controlled trial. Stroke 31:383–391

    Article  PubMed  CAS  Google Scholar 

  18. Macmillan CS, Grant IS, Andrews PJ (2002) Pulmonary and cardiac sequelae of subarachnoid haemorrhage: time for active management? Intensive Care Med 28:1012–1023

    Article  PubMed  CAS  Google Scholar 

  19. Maire FW, Patton HD (1956) Role of the splanchnic nerve and the adrenal medulla in the genesis of preoptic pulmonary edema. Am J Physiol 184:351–355

    PubMed  CAS  Google Scholar 

  20. Manecke GR (2005) Edwards FloTrac sensor and Vigileo monitor: easy, accurate, reliable cardiac output assessment using the arterial pulse wave. Expert Rev Med Devices 2:523–527

    Article  PubMed  Google Scholar 

  21. Maroon JC, Nelson PB (1979) Hypovolemia in patients with subarachnoid hemorrhage: therapeutic implications. Neurosurgery 4:223–226

    Article  PubMed  CAS  Google Scholar 

  22. Meier P, Zierler KL (1954) On the theory of the indicator-dilution method for measurement of blood flow and volume. J Appl Physiol 6:731–744

    PubMed  CAS  Google Scholar 

  23. Metzelder S, Cobum M, Fries M, Reinges M, Reich S, Rossaint R, Marx G, Rex S (2011) Performance of cardiac output measurement derived from arterial pressure waveform analysis in patients requiring high-dose vasopressor therapy. Br J Anaesth 106:776–784

    Article  PubMed  CAS  Google Scholar 

  24. Monnet X, Anguel N, Osman D, Hamzaoui O, Richard C, Teboul JL (2007) Assessing pulmonary permeability by transpulmonary thermodilution allows differentiation of hydrostatic pulmonary edema from ALI/ARDS. Intensive Care Med 33:448–453

    Article  PubMed  Google Scholar 

  25. Muller L, Candela D, Nyonzyma L, Mattatia L, Suehs C, Fabbro-Peray P, Louart G, de La Coussaye JE, Jaber S, Leone M, Lefrant JY, AzuRea group (2011) Disagreement between pulse contour analysis and transpulmonary thermodilution for cardiac output monitoring after routine therapeutic interventions in ICU patients with acute circulatory failure. Eur J Anaesthesiol 28:664–669

    Article  PubMed  Google Scholar 

  26. Mutoh T, Ishikawa T, Nishino K, Yasui N (2009) Evaluation of the FloTrac uncalibrated continuous cardiac output system for perioperative hemodynamic monitoring after subarachnoid hemorrhage. J Neurosurg Anesthesiol 21:218–225

    Article  PubMed  Google Scholar 

  27. Mutoh T, Kazumata K, Ajiki M, Ushikoshi S, Terasaka S (2007) Goal-directed fluid management by bedside transpulmonary hemodynamic monitoring after subarachnoid hemorrhage. Stroke 38:3218–3224

    Article  PubMed  Google Scholar 

  28. Newman EV, Merrell M, Genecin A, Monge C, Milnor WR, McKeever WP (1951) The dye dilution method for describing the central circulation. An analysis of factors shaping the time-concentration curves. Circulation 4:735–746

    Article  PubMed  CAS  Google Scholar 

  29. Neumann P (1999) Extravascular lung water and intrathoracic blood volume: double versus single indicator dilution technique. Intensive Care Med 25:216–219

    Article  PubMed  CAS  Google Scholar 

  30. Pinsky MR (2003) Probing the limits of arterial pulse contour analysis to predict preload responsiveness. Anesth Analg 96:1245–1247

    Article  PubMed  Google Scholar 

  31. Sakka SG, Klein M, Reinhart K, Meier-Hellmann A (2002) Prognostic value of extravascular lung water in critically ill patients. Chest 122:2080–2086

    Article  PubMed  Google Scholar 

  32. Sakka SG, Rühl CC, Pfeiffer UJ, Beale R, McLuckie A, Reinhart K, Meier-Hellmann A (2000) Assessment of cardiac preload and extravascular lung water by single transpulmonary thermodilution. Intensive Care Med 26:180–187

    Article  PubMed  CAS  Google Scholar 

  33. Segal E, Greenlee JD, Hata SJ, Perel A (2004) Monitoring intravascular volumes to direct hypertensive, hypervolemic therapy in a patient with vasospasm. J Neurosurg Anesthesiol 16:296–298

    Article  PubMed  Google Scholar 

  34. Simmons RL, Martin AM Jr, Heisterkamp CA 3rd, Ducker TB (1969) Respiratory insufficiency in combat casualties. II. Pulmonary edema following head injury. Ann Surg 170:39–44

    Article  PubMed  CAS  Google Scholar 

  35. Ware LB, Matthay MA (2005) Clinical practice. Acute pulmonary edema. N Engl J Med 353:2788–2796

    Article  PubMed  CAS  Google Scholar 

  36. Weir BK (1978) Pulmonary edema following fatal aneurysm rupture. J Neurosurg 49:502–507

    Article  PubMed  CAS  Google Scholar 

  37. Wolf S, Diringer MN, Bleck TP, Bruder N, Connolly ES, Citerio G, Gress D, Hänggi D, Hemphill JC 3rd, Hoh B, Lanzino G, Le Roux P, Menon D, Rabinstein A, Schmutzahard E, Shutter L, Stocchetti N, Suarez J, Treggiari M, Tseng MY, Vergouwen M, Vespa P, Zipfel GJ (2011) Routine management of volume status after aneurysmal subarachnoid hemorrhage. Neurocrit Care 15:275–280

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was financially supported by a grant from the Ministry of Education, Science, Sports and Culture (MEXT) of Japan (No. 20592117).

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eiji Isotani.

Additional information

Comment

This paper describes the use of pulse contour analysis (PCA) for the assessment of cardiopulmonary parameters in patients with subarachnoid hemorrhage (SAH). While pulmonary arterial catheters have fallen out of favor in the optimization of cardiac output during triple H therapy, the use of PCA reintroduces the principle of measuring the Frank—Starling curve to increase myocardial output (and thereby improve cerebral blood flow) in patients with vasospasm. By using PCA , the authors describe a biphasic pattern of pulmonary edema (PE) in SAH patients with an acute PE phase related to cardiogenic dysfunction immediately after SAH, and a subacute PE phase due to poor contractility and fluid overload around day 7 post-SAH. As discussed by the authors, this has important management implications for the use of hypervolemic therapy in SAH management and this data will serve as the basis for a planned trial by these authors to investigate alternative treatments to volume therapy of vasospasm post-SAH by augmenting cardiac contractility while minimizing volume overload.

Michael Schneck

Christopher M. Loftus

Philadelphia, USA

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sato, Y., Isotani, E., Kubota, Y. et al. Circulatory characteristics of normovolemia and normotension therapy after subarachnoid hemorrhage, focusing on pulmonary edema. Acta Neurochir 154, 2195–2202 (2012). https://doi.org/10.1007/s00701-012-1491-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00701-012-1491-1

Keywords

Navigation