Skip to main content

Advertisement

Log in

A historical analysis of single-stage gamma knife radiosurgical treatment for large arteriovenous malformations: evolution and outcomes

  • Clinical Article
  • Published:
Acta Neurochirurgica Aims and scope Submit manuscript

Abstract

Background

Large arteriovenous malformations (AVMs) remain challenging and difficult to treat, reflected by evolving strategies developed from simple radiosurgical plans, to encompass embolization and, recently, staged volume treatments. To establish a baseline for future practice, we reviewed our clinical experience.

Method

The outcomes for 492 patients (564 treatments) with AVMs >10 cm3 treated by single-stage radiosurgery were retrospectively analysed in terms of planning, previous embolization and size.

Results

Twenty-eight percent of the patients presented with haemorrhage at a median age of 29 years (range: 2–75). From 1986 to 1993 (157 patients) plans were simplistic, based on angiography using a median of 2 isocentres and a marginal dose of 23 Gy covering 45-70% of the AVM (median volume 15.7 cm3). From 1994 to 2000 (225 patients) plans became more sophisticated, a median of 5 isocentres was used, covering 64-95% of the AVM (14.6 cm3), with a marginal dose of 21 Gy. Since 2000, MRI has been used with angiography to plan for 182 patients. Median isocentres increased to 7 with similar coverage (62-94%) of the AVM (14.3 cm3) and marginal dose of 21 Gy. Twenty-seven percent, 30% and 52% of patients achieved obliteration at 4 years, respectively. The proportion of prior embolization increased from 9% to 44% during the study. Excluding the embolized patients, improvement in planning increased obliteration rates from 28% to 36% and finally 63%. Improving treatment plans did not significantly decrease the rate of persisting radiation-induced side effects (12–16.5%). Complication rate rose with increasing size. One hundred and twenty-three patients underwent a second radiosurgical treatment, with a 64% obliteration rate, and mild and rare complications (6%).

Conclusions

Better visualization of the nidus with multimodality imaging improved obliteration rates without changing morbidity. Our results support the view that prior embolization can make interpretation of the nidus more difficult, reducing obliteration rate. It will be important to see how results of staged volume radiosurgery compare with this historical material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Back AG, Vollmer D, Zeck O, Shkedy C, Shedden PM (2008) Retrospective analysis of unstaged and staged Gamma Knife surgery with and without preceding embolization for the treatment of arteriovenous malformations. J Neurosurg 109(Suppl):57–64

    PubMed  Google Scholar 

  2. Chang SD, Marcellus ML, Marks MP, Levy RP, Do HM, Steinberg GK (2003) Multimodality treatment of giant intracranial arteriovenous malformations. Neurosurgery 53:1–13

    Article  PubMed  Google Scholar 

  3. Coley SC, Wild JM, Wilkinson ID, Griffiths PD (2003) Neurovascular MRI with dynamic contrast-enhanced subtraction angiography. Neuroradiology 45:843–850

    Article  PubMed  CAS  Google Scholar 

  4. Crawford PM, West CR, Chadwick DW, Shaw MDM (1986) Arteriovenous malformations of the brain: Natural history in unoperated patients. J Neurol Neurosurg Psychiatry 49:1–10

    Article  PubMed  CAS  Google Scholar 

  5. Da Costa L, Wallace MC, ter Brugge KG, O’Kelly C, Willinsky RA, Tymianski M (2009) The natural history and predictive features of haemorrhage from brain arteriovenous malformations. Stroke 40:100–105

    Article  PubMed  Google Scholar 

  6. De Oliveira E, Tedeschi H, Raso J (1998) Comprehensive management of arteriovenous malformations. Neurol Res 20:673–683

    PubMed  Google Scholar 

  7. Friedman WA, Blatt DL, Bova FJ, Buatti JM, Mendenhall WM, Kublis PS (1996) The risk of hemorrhage after radiosurgery for arteriovenous malformations. J Neurosurg 84:912–919

    Article  PubMed  CAS  Google Scholar 

  8. Fults D, Kelly DL Jr (1984) Natural history of arteriovenous malformations of the brain: a clinical study. Neurosurgery 15:658–662

    Article  PubMed  CAS  Google Scholar 

  9. Gobin YP, Laurent A, Merienne L, Schlienger M, Aymard A, Houdart E, Casasco A, Lefkopoulos D, George B, Merland JJ (1996) Treatment of brain arteriovenous malformations by embolization and radiosurgery. J Neurosurg 85:19–28

    Article  PubMed  CAS  Google Scholar 

  10. Graf CJ, Perret GE, Torner JC (1983) Bleeding from cerebral arteriovenous malformations as part of their natural history. J Neurosurg 58:331–337

    Article  PubMed  CAS  Google Scholar 

  11. Han PP, Ponce FA, Spetzler RF (2003) Intention-to-treat analysis of Spetzler-Martin grades IV and V arteriovenous malformations: natural history and treatment paradigm. J Neurosurg 98:3–7

    Article  PubMed  Google Scholar 

  12. Han JH, Kim DG, Chung HT, Park CK, Paek SH, Kim JE, Jung HW, Han DH (2008) Clinical and neuroimaging outcome of cerebral arteriovenous malformations after Gamma Knife surgery: analysis of the radiation injury rate depending on the arteriovenous malformation volume. J Neurosurg 109:191–198

    Article  PubMed  Google Scholar 

  13. Henkes H, Nahser HC, Berg-Dammer E, Weber W, Lange S, Kühne D (1998) Endovascular therapy of brain AVMs prior to radiosurgery. Neurol Res 20:479–492

    PubMed  CAS  Google Scholar 

  14. Hernesniemi JA, Dashti R, Juvela S, Väärt K, Niemelä M, Laakso A (2008) Natural history of brain arteriovenous malformations: A long-term follow-up study of risk of hemorrhage in 238 patients. Neurosurgery 63:823–831

    Article  PubMed  Google Scholar 

  15. Hodgson TJ, Kemeny AA, Gholkar A, Deasy N (2009) Embolization of residual fistula following stereotactic radiosurgery in cerebral arteriovenous malformations. AJNR Am J Neuroradiol 30:109–110

    Article  PubMed  CAS  Google Scholar 

  16. Izawa M, Hayashi M, Chernow M, Nakaya K, Ochiai T, Murata N, Takasy Y, Kubo O, Hori T, Takakura K (2005) Long-term complications after gamma knife surgery for arteriovenous malformations. J Neurosurg 102(Suppl):34–37

    Article  PubMed  Google Scholar 

  17. Jayaraman M, Cloft HJ (2009) Embolization of brain arteriovenous malformations for cure: Because we could or because we should? AJNR Am J Neuroradiol 30:107–108

    Article  PubMed  CAS  Google Scholar 

  18. Jayaraman MV, Marcellus ML, Do HM, Chang SD, Rosenberg JK, Steinberg GK, Marks MP (2007) Hemorrhage rate in patients with Spetzler-Martin grades IV and V arteriovenous malformations: is treatment justified? Stroke 38:325–329

    Article  PubMed  Google Scholar 

  19. Jones J, Jang S, Getch CC, Kepka AG, Marymont MH (2007) Advances in the radiosurgical treatment of large inoperable arteriovenous malformations. Neurosurg Focus 23:E7

    PubMed  Google Scholar 

  20. Kader A, Young WL, Pile-Spellman J, Mast H, Sciacca RR, Mohr JP, Stein BM, The Columbia University AVM Study Project (1994) The influence of hemodynamic and anatomic factors on hemorrhage from cerebral arteriovenous malformations. Neurosurgery 34:801–808

    Article  PubMed  CAS  Google Scholar 

  21. Karlsson B, Kihlstrom L, Lindquist C, Steiner L (1998) Gamma knife surgery for previously irradiated arteriovenous malformations. Neurosurgery 42:1–6

    Article  PubMed  CAS  Google Scholar 

  22. Kemeny AA, Radatz MWR, Rowe JG, Walton L, Hampshire A (2004) Gamma knife radiosurgery for cerebral arteriovenous malformations. Acta Neurochir Suppl 91:55–63

    Article  PubMed  CAS  Google Scholar 

  23. Kim HY, Chang WS, Kim DJ, Lee JW, Chang JW, Kim DI, Huh SK, Park YG, Chang JH (2010) Gamma Knife surgery for large cerebral arteriovenous malformations. J Neurosurg 113(Suppl):2–8

    PubMed  Google Scholar 

  24. Kondziolka D, McLaughlin MR, Kestle JRW (1995) Simple risk predictions for arteriovenous malformation hemorrhage. Neurosurgery 37:851–855

    Article  PubMed  CAS  Google Scholar 

  25. Laakso A, Dashti R, Juvela S, Isarakul P, Niemelä M, Hernesniemi J (2011) Risk of hemorrhage in patients with untreated Spetzler-Martin grade IV and V arteriovenous malformations: a long-term follow-up study in 63 patients. Neurosurgery 68:372–377

    Article  PubMed  Google Scholar 

  26. Mast H, Young WL, Koennecke HC, Sciacca RR, Osipov A, Pile-Spellman J, Lotfi Hacein-Bey L, Duong H, Stein BM, Mohr JP (1997) Risk of spontaneous haemorrhage after diagnosis of cerebral arteriovenous malformation. Lancet 350:1065–1068

    Article  PubMed  CAS  Google Scholar 

  27. Mori H, Aoki S, Okubo T, Hayashi N, Masumoto T, Yoshikawa T, Tago M, Shin M, Kurita H, Abe O, Ohtomo K (2003) Two-dimensional thick-slice MR digital subtraction angiography in the assessment of small to medium-size intracranial arteriovenous malformations. Neuroradiology 45:27–33

    PubMed  CAS  Google Scholar 

  28. Nagy G, Major O, Rowe JG, Radatz MWR, Hodgson TJ, Coley SC, Kemeny AA (in press) Stereotactic radiosurgery for arteriovenous malformations located in deep critical regions. Neurosurgery

  29. Ogilvy CS, Stieg PE, Awad I, Brown RD Jr, Kondziolka D, Rosenwasser R, Young WL, Hademenos G (2001) Recommendations for the management of intracranial arteriovenous malformations. A statement for healthcare professionals from a special writing group of the stroke council, American Stroke Association. Stroke 32:1458–1471

    Article  PubMed  CAS  Google Scholar 

  30. Pollock BE, Flickinger JC (2002) A proposed radiosurgery-based grading system for arteriovenous malformations. J Neurosurg 96:79–85

    Article  PubMed  Google Scholar 

  31. Pollock BE, Flickinger JC (2008) Modification of the radiosurgery-based arteriovenous malformation grading system. Neurosurgery 63:239–243

    Article  PubMed  Google Scholar 

  32. Pollock BE, Flickinger JC, Lunsford LD, Bissonette DJ, Kondziolka D (1996) Hemorrhage risk after stereotactic radiosurgery of cerebral arteriovenous malformations. Neurosurgery 38:652–661

    Article  PubMed  CAS  Google Scholar 

  33. Pollock BE, Flickinger JC, Lunsford LD, Bissonette DJ, Kondziolka D (1996) Factors that predict the bleeding risk of cerebral arteriovenous malformations. Stroke 27:1–6

    Article  PubMed  CAS  Google Scholar 

  34. Pollock BE, Flickinger JC, Lunsford LD, Maitz A, Kondziolka D (1998) Factors associated with successful arteriovenous malformation radiosurgery. Neurosurgery 42:1239–1244

    Article  PubMed  CAS  Google Scholar 

  35. Schneider BF, Eberhard DA, Steiner LE (1997) Histopathology of arteriovenous malformations after gamma knife radiosurgery. J Neurosurg 87:352–357

    Article  PubMed  CAS  Google Scholar 

  36. Sirin S, Kondziolka D, Niranjan A, Flickinger JC, Maitz AH, Lunsford LD (2006) Prospective staged volume radiosurgery for large arteriovenous malformations: indications and outcomes in otherwise untreatable patients. Neurosurgery 58:17–27

    Article  PubMed  Google Scholar 

  37. Shaw E, Kline R, Gillin M, Souhami L, Hirschfeld A, Dinapoli R, Martin L (1993) Radiation Therapy Oncology Group: radiosurgery quality assurance guidelines. Int J Radiat Oncol Biol Phys 27:1231–1239

    Article  PubMed  CAS  Google Scholar 

  38. Spetzler RF, Martin NA (1986) A proposed grading system for arteriovenous malformations. J Neurosurg 65:476–483

    Article  PubMed  CAS  Google Scholar 

  39. Spetzler RF, Ponce FA (2011) A 3-tier classification of cerebral arteriovenous malformations. J Neurosurg 114:842–849

    Article  PubMed  Google Scholar 

  40. Spetzler RF, Hargraves RW, McCormick PW, Zabramski JM, Flom RA, Zimmerman RS (1992) Relationship of perfusion pressure and size to risk of hemorrhage from arteriovenous malformations. J Neurosurg 76:918–923

    Article  PubMed  CAS  Google Scholar 

  41. Stapf C, Mohr JP, Cjoi JH, Hartmann A, Mast H (2006) Invasive treatment of unruptured brain arteriovenous malformations is experimental therapy. Curr Opin Neurol 19:63–68

    Article  PubMed  Google Scholar 

  42. Stapf C, Mast H, Sciacca RR, Choi JH, Khaw AV, Connolly ES, Pile-Spellman J, Mohr JP (2006) Predictors of hemorrhage in patients with untreated brain arteriovenous malformation. Neurology 66:1350–1355

    Article  PubMed  CAS  Google Scholar 

  43. Steinberg GK, Chang SD, Levy RP, Marks MP, Frankel K, Marcellus M (1996) Surgical resection of large incompletely treated intracranial arteriovenous malformations following stereotactic radiosurgery. J Neurosurg 84:920–928

    Article  PubMed  CAS  Google Scholar 

  44. Szeifert GT, Timperley WR, Forster DM, Kemeny AA (2007) Histopathological changes in cerebral arteriovenous malformations following Gamma Knife radiosurgery. Prog Neurol Surg 20:212–219

    Article  PubMed  Google Scholar 

  45. Turjman F, Massoud TF, Viñuela F, Sayre JW, Guglielmi G, Duckwiler G (1995) Correlation of the angioarchitectural features of cerebral arteriovenous malformations with clinical presentation of hemorrhage. Neurosurgery 37:856–862

    Article  PubMed  CAS  Google Scholar 

  46. van Swieten JC, Koudstal PJ, Visser MC, Schouten HJA, van Gijn J (1988) Interobserver agreement for the assessment of handicap in stroke patients. Stroke 19:604–607

    Article  PubMed  Google Scholar 

Download references

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andras A. Kemeny.

Additional information

Presented as an oral presentation at the 9th Biennial Congress and Exhibition of the International Stereotactic Radiosurgery Society, June 7–11 2009, Seoul, South Korea

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nagy, G., Rowe, J.G., Radatz, M.W.R. et al. A historical analysis of single-stage gamma knife radiosurgical treatment for large arteriovenous malformations: evolution and outcomes. Acta Neurochir 154, 383–394 (2012). https://doi.org/10.1007/s00701-011-1245-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00701-011-1245-5

Keywords

Navigation