Skip to main content

Advertisement

Log in

Neuroembolization may expose patients to radiation doses previously linked to tumor induction

  • Clinical Article
  • Published:
Acta Neurochirurgica Aims and scope Submit manuscript

An Erratum to this article was published on 02 March 2012

Abstract

Objective

Epidemiological studies indicate a link between low-dose irradiation (<10,000 mGy) to the head and the local occurrence of tumors after decades of delay. Comparable radiation doses can be reached during neuro-endovascular procedures (NEP), but the incidence of similar exposures has not been completely delineated. We compared the levels of radiation to the head measured during NEP to those reported for patients developing radiation-induced cancers.

Methods

In our prospective study we determined the cumulative maximum entrance skin doses (MESD) and the incidence of epilation in 107 consecutive patients submitted to NEP between 2003 and 2007. We also extensively searched the literature and compared our results with the data we found.

Results

The cumulative MESD due to NEP was above 3,000 mGy (range 3,101–5,421 mGy) in 18 patients. In 22 we observed partial epilation within 10 weeks from the initial NEP. Sixty cases of epilation after NEP have been previously reported in the literature. The average of the reported MESD was 4,241 mGy (range 2,000–6,640 mGy).

Conclusion

Physical dosimetry and the incidence of partial epilation indicate that about one fifth of the patients submitted to NEP received radiation doses comparable to those linked to the occurrence of tumors. The potential risks of developing tumors after a long delay, when compared to the immediate benefits of endovascular treatment of aneurysm and arteriovenous malformations (AVM) of the brain, do not counterindicate NEP, but increased awareness of the risk should help physicians and patients to make a fully informed decision when other treatments are available.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Albert RE, Omran AR, Brauer EW, Dove DC, Cohen NC, Schmidt H, Baumring R, Morrill S, Schulz R, Baer RL (1966) Follow-up study of patients treated by x-ray for tinea capitis. Am J Public Health Nations Health 56:2114–2120

    Article  PubMed  CAS  Google Scholar 

  2. Alexander MD, Oliff MC, Olorunsola OG, Brus-Ramer M, Nickoloff EL, Meyers PM (2010) Patient radiation exposure during diagnostic and therapeutic interventional neuroradiology procedures. J Neuro Interv Surg 2:6–10. doi:10.1136/jnis.2009.000802

    CAS  Google Scholar 

  3. Avoidance of Radiation Injuries from Medical Interventional Procedures ICRP Publication 85. Ann ICRP 2000; 30

  4. Balter S, Hopewell JW, Miller DL, Wagner LK, Zelefsky MJ, Bastir M, Rosas A, O’Higgins P (2010) Fluoroscopically guided interventional procedures: a review of radiation effects on patients’ skin and hair. Radiology 254:326–341

    Article  PubMed  Google Scholar 

  5. Bastir M, Rosas A, O’Higgins P (2006) Craniofacial levels and the morphological maturation of the human skull. J Anat 209:637–654

    Article  PubMed  Google Scholar 

  6. Board of Radiation Effects Research Division on Earth and Life Sciences (2006) Health risks from exposure to low levels of ionizing radiation: BEIR VII phase 2. National Academy Press, Washington, DC

    Google Scholar 

  7. Currie S, Mankad K, Goddard A (2011) Endovascular treatment of intracranial aneurysms: review of current practice. Postgrad Med J 87:41–50

    Article  PubMed  Google Scholar 

  8. D’Ercole L, Mantovani L, Thyrion FZ, Bocchiola M, Azzaretti A, Di Maria F, Saluzzo CM, Quaretti P, Rodolico G, Scagnelli P, Andreucci L (2007) A study on maximum skin dose in cerebral embolization procedures. AJNR Am J Neuroradiol 28:503–507

    PubMed  Google Scholar 

  9. D’Ercole L, Thyrion FZ, Bocchiola M, Mantovani L, Klersy C (2010) Proposed local diagnostic reference levels in angiography and interventional neuroradiology and a preliminary analysis according to the complexity of the procedures. Phys Med. PMID:21074469

  10. Diallo I, Haddy N, Adjadj E, Samand A, Quiniou E, Chavaudra J, Alziar I, Perret N, Guérin S, Lefkopoulos D, de Vathaire F (2009) Frequency distribution of second solid cancer locations in relation to the irradiated volume among 115 patients treated for childhood cancer. Int J Radiat Oncol Biol Phys 74:876–883

    Article  PubMed  Google Scholar 

  11. D’incan M, Roger H, Gabrillargues J, Mansard S, Parent S, Chazal J, Irthum B, Souteyrand P (2002) Radiation-induced temporary hair loss after endovascular embolization of the cerebral arteries: six cases. Ann Dermatol Venereol 129:703–706

    PubMed  Google Scholar 

  12. Flint-Richter P, Sadetzki S (2007) Genetic predisposition for the development of radiation-associated meningioma: an epidemiological study. Lancet Oncol 8:403–410

    Article  PubMed  Google Scholar 

  13. Geleijns J, Wondergem J (2005) X-ray imaging and the skin: radiation biology, patient dosimetry and observed effects. Radiat Prot Dosimetry 114:121–125

    Article  PubMed  Google Scholar 

  14. Gkanatsios NA, Huda W, Peters KR (2002) Adult patient doses in interventional neuroradiology. Med Phys 29:717–723

    Article  PubMed  Google Scholar 

  15. Guglielmi G (1997) Endovascular treatment of aneurysms. History, development and application of current techniques. J Stroke Cerebrovasc Dis 6:246–248

    Article  PubMed  CAS  Google Scholar 

  16. Hayakawa M, Moritake T, Kataoka F, Takigawa T, Koguchi Y, Miyamoto Y, Akahane K, Matsumaru Y (2010) Direct measurement of patient’s entrance skin dose during neurointerventional procedure to avoid further radiation-induced skin injuries. Clin Neurol Neurosurg 112:530–536

    Article  PubMed  Google Scholar 

  17. http://www.ev3.net/neuro/us/embolic-coils. accessed on May 1, 2011

  18. Huda W, Peters KR (1994) Radiation-induced temporary epilation after a neuroradiologically guided embolization procedure. Radiology 193:642–644

    PubMed  CAS  Google Scholar 

  19. Imanishi Y, Fukui A, Niimi H, Itoh D, Nozaki K, Nakaji S, Ishizuka K, Tabata H, Furuya Y, Uzura M, Takahama H, Hashizume S, Arima S, Nakajima Y (2005) Radiation-induced temporary hair loss as a radiation damage only occurring in patients who had the combination of MDCT and DSA. Eur Radiol 15:41–46

    Article  PubMed  Google Scholar 

  20. Jung YH, Park SH, Kim YS, Hamm IS (2005) Six-year experience of endovascular embolization for intracranial aneurysms. J Korean Neurosurg Soc 38:190–195

    Google Scholar 

  21. Krasovec M, Trüeb RM (1998) Temporary roentgen epilation after embolization of a cerebral arteriovenous malformation. Hautarzt 49:307–309

    Article  PubMed  CAS  Google Scholar 

  22. Lee WS, Lee SW, Lee S, Lee JW (2004) Postoperative alopecia in five patients after treatment of aneurysm rupture with a Guglielmi detachable coil: pressure alopecia, radiation induced, or both? J Dermatol 31:848–851

    PubMed  Google Scholar 

  23. Livingstone RS, Raghuram L, Korah IP, Raj DV (2003) Evaluation of radiation risk and work practices during cerebral interventions. J Radiol Prot 23:327–336

    Article  PubMed  Google Scholar 

  24. Longstreth WT Jr, Phillips LE, Drangsholt M, Koepsell TD, Custer BS, van Gehrels JA, Belle G (2004) Dental X-rays and the risk of intracranial meningioma: a population-based case-control study. Cancer 100:1026–1034

    Article  PubMed  Google Scholar 

  25. Maalej M, Frikha H, Kochbati L, Bouaouina N, Sellami D, Benna F, Gargouri W, Dhraief S, Nasr C, Daoud J, Hajji M, Fazaa B, Souissi R, Mokhtar I, Kamoun MR (2004) Radio-induced malignancies of the scalp about 98 patients with 150 lesions and literature review. Cancer Radiother 8:81–87

    Article  PubMed  Google Scholar 

  26. Marti N, Lopez V, Pereda C, Martin JM, Montesinos E, Jorda E (2008) Radiation-induced temporary alopecia after embolization of cerebral aneurysms. Dermatol Online J 14:19

    PubMed  Google Scholar 

  27. Mistretta CA (2011) Sub-Nyquist acquisition and constrained reconstruction in time resolved angiography. Med Phys 38:2975–2985

    Article  PubMed  Google Scholar 

  28. Molyneux A, Kerr R, Stratton I, Sandercock P, Clarke M, Shrimpton J, Holman R (2002) International Subarachnoid Aneurysm Trial (ISAT) collaborative Group, et al. International Subarachnoid Aneurysm Trial (ISAT) of neurosurgical clipping versus endovascular coiling in 2,143 patients with ruptured intracranial aneurysms: a randomised trial. Lancet 360:1267–1274

    Article  PubMed  Google Scholar 

  29. Molyneux AJ, Kerr RS, Birks J, Ramzi N, Yarnold J, Sneade M, Rischmiller J, Collaborators ISAT (2009) Risk of recurrent subarachnoid haemorrhage, death, or dependence and standardised mortality ratios after clipping or coiling of an intracranial aneurysm in the International Subarachnoid Aneurysm Trial (ISAT): long-term follow-up. Lancet Neurol 8:427–433

    Article  PubMed  Google Scholar 

  30. Momani MS, Shore-Freedman E, Collins BJ, Lubin J, Ron E, Schneider AB (2004) Familial concordance of thyroid and other head and neck tumors in an irradiated cohort: analysis of contributing factors. J Clin Endocrinol Metab 89:2185–2191

    Article  PubMed  CAS  Google Scholar 

  31. Mooney RB, McKinstry CS, Kamel HA (2000) Absorbed dose and deterministic effects to patients from interventional neuroradiology. Br J Radiol 73:745–751

    PubMed  CAS  Google Scholar 

  32. Nannapaneni R, Behari S, Mendelow D, Gholkar A (2007) Temporary alopecia after subarachnoid haemorrhage. J Clin Neurosci 14:157–161

    Article  PubMed  CAS  Google Scholar 

  33. Neil S, Padgham C, Martin CJ (2010) A study of the relationship between peak skin dose and cumulative air kerma in interventional neuroradiology and cardiology. J Radiol Prot 30:659–672

    Article  PubMed  CAS  Google Scholar 

  34. Norbash AM, Busick D, Marks MP (1996) Techniques for reducing interventional neuroradiologic skin dose: tube position rotation and supplemental beam filtration. AJNR Am J Neuroradiol 17:41–49

    PubMed  CAS  Google Scholar 

  35. Preston DL, Ron E, Yonehara S, Kobuke T, Fugii H, Kishikawa M, Tokunaga M, Tokuoka S, Mabuchi K (2002) tumors of the nervous system and pituitary gland associated with atomic bomb radiation exposure. J Natl Cancer Inst 94:1555–1563

    Article  PubMed  CAS  Google Scholar 

  36. Rinkel GJ, Algra A (2011) Long-term outcomes of patients with aneurysmal subarachnoid haemorrhage. Lancet Neurol 10:349–356

    Article  PubMed  Google Scholar 

  37. Sadetzki S, Chetrit A, Freedman L, Stovall M, Modan B, Novikov I (2005) Long-term follow-up for brain tumor development after childhood exposure to ionizing radiation for tinea capitis. Radiat Res 163:424–432

    Article  PubMed  CAS  Google Scholar 

  38. Sandborg M, Rossitti S, Pettersson H (2010) Local skin and eye lens equivalent doses in interventional neuroradiology. Eur Radiol 20:725–733

    Article  PubMed  Google Scholar 

  39. Saracci R, Samet J (2010) Commentary: Call me on my mobile phone…or better not?–a look at the INTERPHONE study results. Int J Epidemiol 39:695–698

    Article  PubMed  Google Scholar 

  40. Schneider AB, Ron E, Lubin J, Stovall M, Shore-Freedman E, Tolentino J, Collins BJ (2008) Acoustic neuromas following childhood radiation treatment for benign conditions of the head and neck. Neuro Oncol 10:73–78

    Article  PubMed  Google Scholar 

  41. Schueler BA, Kallmes DF, Cloft HJ (2005) 3D cerebral angiography: radiation dose comparison with digital subtraction angiography. AJNR Am J Neuroradiol 26:1898–1901

    PubMed  Google Scholar 

  42. Shore RE, Moseson M, Harley N, Pasternack BS (2003) tumors and other diseases following childhood x-ray treatment for ringworm of the scalp (tinea capitis). Health Phys 85:404–408

    Article  PubMed  CAS  Google Scholar 

  43. Shvarts S, Sevo G, Tasic M, Shani M, Sadetzki S (2010) The tinea capitis campaign in Serbia in the 1950s. Lancet Infect Dis 10:571–576

    Article  PubMed  Google Scholar 

  44. Suzuki S, Furui S, Matsumaru Y, Nobuyuki S, Ebara M, Abe T, Itoh D (2008) Patient skin dose during neuroembolization by multiple-point measurement using a radiosensitive indicator. AJNR Am J Neuroradiol 29:1076–1081

    Article  PubMed  CAS  Google Scholar 

  45. Sznajder L, Abrahams C, Parry DM, Gierlowski TC, Shore-Freedman E, Schneider AB (1996) Multiple schwannomas and meningiomas associated with irradiation in childhood. Arch Intern Med 156:1873–1878

    Article  PubMed  CAS  Google Scholar 

  46. The 2007 Recommendations of the International Commission on Radiological Protection ICRP Publication 103 Ann ICRP 2007; 37

  47. Thierry-Chef I, Simon SL, Land CE, Miller DL (2008) Radiation dose to the brain and subsequent risk of developing brain tumors in pediatric patients undergoing interventional neuroradiology procedures. Radiat Res 170:553–565

    Article  PubMed  CAS  Google Scholar 

  48. Thorat JD, Hwang PY (2007) Peculiar geometric alopecia and trigeminal nerve dysfunction in a patient after Guglielmi detachable coil embolization of a ruptured aneurysm. J Stroke Cerebrovasc Dis 16:40–42

    Article  PubMed  Google Scholar 

  49. Tosti A, Piraccini BM, Alagna G (1999) Temporary hair loss simulating alopecia areata after endovascular surgery of cerebral arteriovenous malformations: a report of 3 cases. Arch Dermatol 135:1555–1556

    Article  PubMed  CAS  Google Scholar 

  50. Vano E, Ubeda C, Martinez LC, Leyton F, Miranda P (2010) Paediatric interventional cardiology: flat detector versus image intensifier using a test object. Phys Med Biol 55:7287–7297

    Article  PubMed  CAS  Google Scholar 

  51. Wen CS, Lin SM, Chen Y, Chen JC, Wang YH, Tseng SH (2003) Radiation-induced temporary alopecia after embolization of cerebral arteriovenous malformations. Clin Neurol Neurosurg 105:215–217

    Article  PubMed  Google Scholar 

  52. Wiart J, Hadjem A, Gadi N, Bloch I, Wong MF, Pradier A, Lautru D, Hanna VF, Dale C (2005) Modeling of RF head exposure in children. Bioelectromag Suppl 7:S19–S30

    Article  Google Scholar 

  53. Yonehara S, Brenner AV, Kishikawa M, Inskip PD, Preston DL, Ron E, Mabuchi K, Tokuoka S (2004) Clinical and epidemiologic characteristics of first primary tumors of the central nervous system and related organs among atomic bomb survivors in Hiroshima and Nagasaki, 1958–1995. Cancer 101:1644–1654

    Article  PubMed  Google Scholar 

  54. Zeeb H, Hammer GP, Langner I, Schafft T, Bennack S, Blettner M (2010) Cancer mortality among German aircrew: second follow-up. Radiat Environ Biophys 49:187–194

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Eloisa Arbustini, Dr. Gabriele Biella, Dr. Roberto Imberti, and Dr. Marco Marchionni for useful suggestions and corrections. We thank the participating patients and their families; this study would not have been possible without their cooperation.

Conflicts of interest

None.

Funding

This study was supported by Fondazione IRCCS Policlinico S. Matteo (Pavia, Italy) with funds awarded for intramural studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorenzo Magrassi.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s00701-012-1280-x.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Magrassi, L., Bongetta, D., D’Ercole, L. et al. Neuroembolization may expose patients to radiation doses previously linked to tumor induction. Acta Neurochir 154, 33–41 (2012). https://doi.org/10.1007/s00701-011-1209-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00701-011-1209-9

Keywords

Navigation