Acta Neurochirurgica

, Volume 153, Issue 5, pp 995–1001 | Cite as

Changes in the range of motion of the cervical spine and adjacent segments at ≥24 months after uninstrumented corpectomy for cervical spondylotic myelopathy

  • Aditya Vedantam
  • Kumbhar Kartik Revanappa
  • Vedantam RajshekharEmail author
Clinical Article



Few clinical studies have described the changes in the range of motion (ROM) of the cervical spine and adjacent segments following central corpectomy. We aimed to quantify the changes in range of motion (ROM) of the cervical spine and the adjacent segments at ≥24 months following uninstrumented central corpectomy (CC) for cervical spondylotic myelopathy (CSM) and to determine the contribution of the adjacent segments to the compensation for loss of motion of the cervical spine following CC.


Preoperative and follow-up lateral cervical spine radiographs of 36 patients who underwent CC for CSM between 2001 and 2007 were compared for the ROM of the subaxial cervical spine, superior and inferior adjacent segment. Anterior osteophytes as seen on the radiographs were classified according to Nathan’s grading system.


The mean duration of follow-up was 48.5 months. At follow-up, the total cervical spine ROM decreased by 18.3° ± 2.2° (p < 0.001), the superior adjacent segment ROM increased by 2.3° ± 0.9° (p = 0.01) and the inferior adjacent segment ROM, measured in 20 cases, increased by 6.2° ± 1.7° (p = 0.01). The superior adjacent segment showed a 70% increase, whereas the inferior adjacent segment showed a 110% increase in mobility. Nathan’s grade at the superior or inferior adjacent segment increased in 12 cases.


CC significantly reduces the motion of the cervical spine and increases the adjacent segment mobility at intermediate follow-up. The inferior adjacent segment shows greater compensation of motion as compared to the superior adjacent segment in our series. Adjacent segment degeneration as estimated by Nathan’s grade was seen in one-third of the cases.


Cervical spine Cervical spondylosis Corpectomy Adjacent segment Range of motion 


Conflicts of interest



  1. 1.
    Adams CBT, Logue V (1971) Studies in cervical spondylotic myelopathy: I. Movement of the cervical roots, dura and cord, and their relation to the course of the extrathecal roots. Brain 94:557–568PubMedCrossRefGoogle Scholar
  2. 2.
    Adams CBT, Logue V (1971) Studies in cervical spondylotic myelopathy: II. The movement and contour of the spine in relation to the neural complications of cervical spondylosis. Brain 94:569–586CrossRefGoogle Scholar
  3. 3.
    Ahn P-G, Kim KN, Moon SW, Kim KS (2009) Changes in cervical range of motion and sagittal alignment in early and late phases after total disc replacement: radiographic follow-up exceeding 2 years. J Neurosurg Spine 11:688–695PubMedCrossRefGoogle Scholar
  4. 4.
    Baba H, Furusawa N, Imura S, Kawahara N, Tsuchiya H, Tomita K (1993) Late radiographic findings after anterior cervical fusion for spondylotic myeloradiculopathy. Spine 18:2167–2173PubMedCrossRefGoogle Scholar
  5. 5.
    Barnes MP, Saunders M (1984) The effect of cervical mobility on the natural history of cervical spondylotic myelopathy. J Neurol Neurosurg Psychiatry 47:17–20PubMedCrossRefGoogle Scholar
  6. 6.
    Braunstein EM, Hunter LY, Bailey RW (1980) Long term radiographic changes following anterior cervical fusion. Clin Radiol 31:201–203PubMedCrossRefGoogle Scholar
  7. 7.
    Capen DA, Garland DE, Waters RL (1985) Surgical stabilization of the cervical spine: a comparative analysis of anterior and posterior spine fusions. Clin Orthop Relat Res 196:229–237PubMedGoogle Scholar
  8. 8.
    Cheng JS, Liu F, Komistek RD, Mahfouz MR, Sharma A, Glaser D (2007) Comparison of cervical spine kinematics using a fluoroscopic model for adjacent segment degeneration. J Neurosurg Spine 7:509–513PubMedCrossRefGoogle Scholar
  9. 9.
    Cherubino P, Benazzo F, Borromeo U, Perle S (1990) Degenerative arthritis of the adjacent spinal joints following anterior cervical spinal fusion: clinicoradiologic and statistical correlations. Ital J Orthop Traumatol 16:533–543PubMedGoogle Scholar
  10. 10.
    DiAngelo DJ, Foley KT, Vossel KA, Rampersaud YR, Jansen TH (2000) Anterior cervical plating reverses load transfer through multilevel strut-grafts. Spine 25:783–795PubMedCrossRefGoogle Scholar
  11. 11.
    Dmitriev AE, Cunningham BW, Hu N, Sell G, Vigna F, McAfee PC (2005) Adjacent level intradiscal pressure and segmental kinematics following a cervical total disc arthroplasty: an in vitro human cadaveric model. Spine 30:1165–1172PubMedCrossRefGoogle Scholar
  12. 12.
    Dmitriev AE, Kuklo TR, Lehman RAJ, Rosner MK (2007) Stabilizing potential of anterior, posterior, and circumferential fixation for multilevel cervical arthrodesis: an in vitro human cadaveric study of the operative and adjacent segment kinematics. Spine 32:E188–E196PubMedCrossRefGoogle Scholar
  13. 13.
    Döhler JR, Kahn MRH, Hughes SPF (1985) Instability of the cervical spine after anterior interbody fusion. Arch Orthop Trauma Surg 104:247–250PubMedCrossRefGoogle Scholar
  14. 14.
    Eck JC, Humphreys SC, Lim T-H, Jeong ST, Kim JG, Hodges SD, An HS (2002) Biomechanical study on the effect of cervical spine fusion on adjacent-level intradiscal pressure and segmental Motion. Spine 27:2431–2434PubMedCrossRefGoogle Scholar
  15. 15.
    Edwards CC II, Heller JG, Murakami H (2002) Corpectomy versus laminoplasty for multilevel cervical myelopathy: an independent matched-cohort analysis. Spine 27:1168–1175PubMedCrossRefGoogle Scholar
  16. 16.
    Emery SE, Bohlman HH, Bolesta MJ, Jones PK (1998) Anterior cervical decompression and arthrodesis for the treatment of cervical spondylotic myelopathy: two to seventeen-year follow-up. J Bone Joint Surg Am 80:941–951PubMedCrossRefGoogle Scholar
  17. 17.
    Fuller DA, Kirkpatrick JS, Emery SE, Wilber RG, Davy DT (1998) A kinematic study of the cervical spine before and after segmental arthrodesis. Spine 23:1649–1656PubMedCrossRefGoogle Scholar
  18. 18.
    Galler RM, Dogan S, Fifield MS, Bozkus H, Chamberlain RH, Sonntag VK, Crawford NR (2007) Biomechanical comparison of instrumented and uninstrumented multilevel cervical discectomy versus corpectomy. Spine 32:1220–1226PubMedCrossRefGoogle Scholar
  19. 19.
    Goffin J, Geusens E, Vantomme N, Quintens E, Waerzeggers Y, Depreitere B, Van Calenbergh F, van Loon J (2004) Long-term follow-up after interbody fusion of the cervical spine. J Spinal Disord Tech 17:79–85PubMedGoogle Scholar
  20. 20.
    Gore DR, Gardner GM, Sepic SB, Murray MP (1986) Roentgenographic findings following anterior cervical fusion. Skeletal Radiol 15:556–559PubMedCrossRefGoogle Scholar
  21. 21.
    Hacker RJ, Cauthen JC, Gilbert TJ, Griffith SL (2000) A prospective randomized multicenter clinical evaluation of an anterior cervical fusion cage. Spine 25:2646–2655PubMedCrossRefGoogle Scholar
  22. 22.
    Hanai K, Fujiyoshi F, Kamei K (1986) Subtotal vertebrectomy and spinal fusion for cervical spondylotic myelopathy. Spine 11:310–315PubMedCrossRefGoogle Scholar
  23. 23.
    Hilibrand AS, Balasubramanian K, Eichenbaum M, Thinnes JH, Daffner S, Berta S, Albert TJ, Vaccaro AR, Siegler S (2006) The effect of anterior cervical fusion on neck motion. Spine 31:1688–1692PubMedCrossRefGoogle Scholar
  24. 24.
    Hilibrand AS, Carlson GD, Palumbo MA, Jones PK, Bohlman HH (1999) Radiculopathy and myelopathy at segments adjacent to the site of a previous anterior cervical arthrodesis. J Bone Joint Surg Am 81:519–528PubMedGoogle Scholar
  25. 25.
    Humphreys SC, Hodges SD, Patwardhan A, Eck JC, Covington LA, Sartori M (1998) The natural history of the cervical foramen in symptomatic and asymptomatic individuals aged 20–60 years as measured by magnetic resonance imaging: a descriptive approach. Spine 23:2180–2184PubMedCrossRefGoogle Scholar
  26. 26.
    Hunter LY, Braunstein EM, Bailey RW (1980) Radiographic changes following anterior cervical fusion. Spine 5:399–401PubMedCrossRefGoogle Scholar
  27. 27.
    Ikenaga M, Shikata J, Tanaka C (2005) Anterior corpectomy and fusion with fibular strut grafts for multilevel cervical myelopathy. J Neurosurg Spine 3:79–85PubMedCrossRefGoogle Scholar
  28. 28.
    Kirkpatrick JS, Levy JA, Carillo J, Moeini SR (1999) Reconstruction after multilevel corpectomy in the cervical spine: a sagittal plane biomechanical study. Spine 24:1186–1190PubMedCrossRefGoogle Scholar
  29. 29.
    Kolstad F, Nygaard OP, Leivseth G (2007) Segmental motion adjacent to anterior cervical arthrodesis: a prospective study. Spine 32:512–517PubMedCrossRefGoogle Scholar
  30. 30.
    Kulkarni V, Rajshekhar V, Raghuram L (2004) Accelerated spondylotic changes adjacent to the fused segment following central cervical corpectomy: magnetic resonance imaging study evidence. J Neurosurg 100:2–6PubMedCrossRefGoogle Scholar
  31. 31.
    Kumar GS, Rajshekhar V (2009) Acute graft extrusion following central corpectomy in patients with cervical spondylotic myelopathy and ossified posterior longitudinal ligament. J Clin Neurosci 16:373–377PubMedCrossRefGoogle Scholar
  32. 32.
    Maeda T, Arizono T, Saito T, Iwamoto Y (2002) Cervical alignment, range of motion, and instability after cervical laminoplasty. Clin Orthop Relat Res 401:132–138PubMedCrossRefGoogle Scholar
  33. 33.
    Matsunaga S, Kabayama S, Yamamoto T, Yone K, Sakou T, Nakanishi K (1999) Strain on intervertebral discs after anterior cervical decompression and fusion. Spine 24:670–675PubMedCrossRefGoogle Scholar
  34. 34.
    Morio Y, Yamamoto K, Teshima R, Nagashima H, Hagino H (2000) Clinicoradiologic study of cervical laminoplasty with posterolateral fusion or bone graft. Spine 25:190PubMedCrossRefGoogle Scholar
  35. 35.
    Nathan H (1962) Osteophytes of the vertebral column: an anatomical study of their development according to age, race, and sex with considerations as to their etiology and significance. J Bone Joint Surg Am 44:243–268Google Scholar
  36. 36.
    Oh MC, Zhang HY, Park JY, Kim KS (2009) Two-level anterior cervical discectomy versus one-level corpectomy in cervical spondylotic myelopathy. Spine 34:692–696PubMedCrossRefGoogle Scholar
  37. 37.
    Park D-H, Ramakrishnan P, Cho T-H, Lorenz E, Eck JC, Humphreys SC, Lim T-H (2007) Effect of lower two-level anterior cervical fusion on the superior adjacent level. J Neurosurg Spine 7:336–340PubMedCrossRefGoogle Scholar
  38. 38.
    Park S-A, Fayyazi AH, Ordway NR, Sun MH, Fredrickson BE, Yuan HA (2009) Correlation of radiostereometric measured cervical range of motion with clinical radiographic findings after anterior cervical discectomy and fusion. Spine 34:680–686PubMedCrossRefGoogle Scholar
  39. 39.
    Rajshekhar V, Arunkumar MJ, Kumar SS (2003) Changes in cervical spine curvature after uninstrumented one- and two-level corpectomy in patients with spondylotic myelopathy. Neurosurgery 52:799–804PubMedCrossRefGoogle Scholar
  40. 40.
    Rajshekhar V, Kumar GS (2005) Functional outcome after central corpectomy in poor-grade patients with cervical spondylotic myelopathy or ossified posterior longitudinal ligament. Neurosurgery 56:1279–1284PubMedCrossRefGoogle Scholar
  41. 41.
    Rajshekhar V, Muliyil J (2007) Patient perceived outcome after central corpectomy for cervical spondylotic myelopathy. Surg Neurol 68:185–190PubMedCrossRefGoogle Scholar
  42. 42.
    Reid JD (1960) Effects of flexion-extension movements of the head and spine upon the spinal cord and nerve roots. J Neurol Neurosurg Psychiatry 23:214–221PubMedCrossRefGoogle Scholar
  43. 43.
    Reitman CA, Hipp JA, Nguyen L, Esses SI (2004) Changes in segmental intervertebral motion adjacent to cervical arthrodesis: a prospective study. Spine 29:E221–E226PubMedCrossRefGoogle Scholar
  44. 44.
    Sasso RC, Smucker JD, Hacker RJ, Heller JG (2007) Artificial disc versus fusion: a prospective, randomized study with 2-year follow-up on 99 patients. Spine 32:2933–2940PubMedCrossRefGoogle Scholar
  45. 45.
    Schwab JS, DiAngelo DJ, Foley KT (2006) Motion compensation associated with single-level cervical fusion: where does the lost motion go? Spine 31:2439–2448PubMedCrossRefGoogle Scholar
  46. 46.
    Shin DA, Yi S, Yoon DH, Kim KN, Shin HC (2009) Artificial disc replacement combined with fusion versus two-level fusion in cervical two-level disc disease. Spine 34:1153–1159PubMedCrossRefGoogle Scholar
  47. 47.
    Simpson AK, Biswas D, Emerson JW, Lawrence BD, Grauer JN (2008) Quantifying the effects of age, gender, degeneration, and adjacent level degeneration on cervical spine range of motion using multivariate analyses. Spine 33:183–186PubMedCrossRefGoogle Scholar
  48. 48.
    Thakar S, Vedantam A, Rajshekhar V (2008) Correlation between change in graft height and change in segmental angle following central corpectomy for cervical spondylotic myelopathy. J Neurosurg Spine 9:158–166PubMedCrossRefGoogle Scholar
  49. 49.
    Wada E, Suzuki S, Kanazawa A, Matsuoka T, Miyamoto S, Yonenobu K (2001) Subtotal corpectomy versus laminoplasty for multilevel cervical spondylotic myelopathy: a long-term follow-up study over 10 years. Spine 26:1443–1447PubMedCrossRefGoogle Scholar
  50. 50.
    White AA III, Panjabi MM (1990) Clinical biomechanics of the spine. JB Lippincott, Philadelphia, p 98Google Scholar
  51. 51.
    Wigfield C, Gill S, Nelson R, Langdon I, Metcalf N, Robertson J (2002) Influence of an artificial cervical joint compared with fusion on adjacent-level motion in the treatment of degenerative cervical disc disease. J Neurosurg Spine 96:17–21CrossRefGoogle Scholar
  52. 52.
    Woesner ME, Mitts MG (1972) The evaluation of cervical spine motion below C2: a comparison of cineroentgenographic and conventional roentgenographic methods. Am J Roentgenol 115:148–154Google Scholar
  53. 53.
    Ylinen JJ, Savolainen S, Airaksinen O, Kautiainen H, Salo P, Häkkinen A (2003) Decreased strength and mobility in patients after anterior cervical diskectomy compared with healthy subjects. Arch Phys Med Rehabil 84:1043–1047PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Aditya Vedantam
    • 1
  • Kumbhar Kartik Revanappa
    • 1
  • Vedantam Rajshekhar
    • 1
    Email author
  1. 1.Department of Neurological SciencesChristian Medical College and HospitalVelloreIndia

Personalised recommendations