Skip to main content

The effects of Nigella sativa against oxidative injury in a rat model of subarachnoid hemorrhage



The aim of the study was to investigate the putative neuroprotective effect of Nigella sativa oil (NSO) treatment against subarachnoid hemorrhage (SAH) in rats.


To induce SAH, rats were injected with 0.3 ml blood into their cisterna magna. Male Wistar albino rats were divided as control, vehicle-treated SAH, and NSO-treated (0.2 ml/kg, intraperitoneally) SAH groups. Forty-eight hours after SAH induction, neurological examination scores were recorded and the rats were decapitated. Brain tissue samples were taken for blood brain barrier permeability, brain water content, or determination of malondialdehyde (MDA) and glutathione (GSH) levels, myeloperoxidase (MPO), and Na+–K+–ATPase activities.

Results and discussion

On the second day of SAH induction, neurological examination scores were increased in SAH groups, while SAH caused significant decreases in brain GSH content and Na+–K+–ATPase activity, which were accompanied with significant increases in MDA levels and MPO activity. The histological observation showed vasospasm of the basillary artery. On the other hand, NSO treatment markedly improved the neurological scores while all oxidant responses were prevented, implicating that NSO treatment may be of therapeutic use in preventing oxidative stress due to SAH.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    Ali BH, Blunden G (2003) Pharmacological and toxicological properties of Nigella sativa. Phytother Res 17:299–305

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Ansar S, Larsen C, Maddahi A, Edvinsson L (2010) Subarachnoid hemorrhage induces enhanced expression of thromboxane A2 receptors in rat cerebral arteries. Brain Res 1316:163–172

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Asano T (1999) Oxyhemoglobin as the principal cause of cerebral vasospasm: a holistic view of its actions. Crit Rev Neurosurg 9:303–318

    Article  PubMed  Google Scholar 

  4. 4.

    Ayer R, Zhang J (2010) Connecting the early brain injury of aneurysmal subarachnoid hemorrhage to clinical practice. Turk Neurosurg 20:159–166

    PubMed  Google Scholar 

  5. 5.

    Ayer RE, Sugawara T, Chen W, Tong W, Zhang JH (2008) Melatonin decreases mortality following severe subarachnoid hemorrhage. J Pineal Res 44:197–204

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Ayer RE, Zhang JH (2008) Oxidative stress in subarachnoid haemorrhage: significance in acute brain injury and vasospasm. Acta Neurochir Suppl 104:33–41

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Badary OA, Taha RA, Gamal el-Din AM, Abdel-Wahab MH (2003) Thymoquinone is a potent superoxide anion scavenger. Drug Chem Toxicol 26:87–98

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Bayrak O, Bavbek N, Karatas OF, Bayrak R, Catal F, Cimentepe E, Akbas A, Yildirim E, Unal D, Akcay A (2008) Nigella sativa protects against ischaemia/reperfusion injury in rat kidneys. Nephrol Dial Transplant 23:2206–2212

    Article  PubMed  Google Scholar 

  9. 9.

    Beuge JA, Aust SD (1978) Microsomal lipid peroxidation. Methods Enzymol 53:302–311

    Article  Google Scholar 

  10. 10.

    Beutler E (1975) Glutathione in red blood cell metabolism. A manual of biochemical methods. Grune&Stratton, New York

    Google Scholar 

  11. 11.

    Cahill J, Calvert JW, Solaroglu I, Zhang JH (2006) Vasospasm and p53-induced apoptosis in an experimental model of subarachnoid hemorrhage. Stroke 37:1868–1874

    Article  PubMed  Google Scholar 

  12. 12.

    del Zoppo GJ, Hallenbeck JM (2000) Advances in the vascular pathophysiology of ischemic stroke. Thromb Res 98:73–81

    Article  PubMed  Google Scholar 

  13. 13.

    del Zoppo GJ, von Kummer R, Hamann GF (1998) Ischaemic damage of brain microvessels: inherent risks for thrombolytic treatment in stroke. J Neurol Neurosurg Psychiatry 65:1–9

    Article  PubMed  Google Scholar 

  14. 14.

    Delgado TJ, Brismar J, Svendgaard NA (1985) Subarachnoid haemorrhage in the rat: angiography and fluorescence microscopy of the major cerebral arteries. Stroke 16:595–602

    CAS  PubMed  Google Scholar 

  15. 15.

    Dietrich HH, Dacey RG Jr (2000) Molecular keys to the problems of cerebral vasospasm. Neurosurgery 46:517–530

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Doczi T, Joo F, Adam G, Bozoky B, Szerdahelyi P (1986) Blood–brain barrier damage during the acute stage of subarachnoid hemorrhage, as exemplified by a new animal model. Neurosurgery 18:733–739

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Doczi T, Joo F, Szerdahelyi P, Bodosi M (1987) Regulation of brain water and electrolyte contents: the possible involvement of central atrial natriuretic factor. Neurosurgery 21:454–458

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    El-Abhar HS, Abdallah DM, Saleh S (2003) Gastroprotective activity of Nigella sativa oil and its constituent, thymoquinone, against gastric mucosal injury induced by ischaemia/reperfusion in rats. J Ethnopharmacol 84:251–258

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    El-Dakhakhny M, Madi NJ, Lembert N, Ammon HP (2002) Nigella sativa oil, nigellone and derived thymoquinone inhibit synthesis of 5-lipoxygenase products in polymorphonuclear leukocytes from rats. J Ethnopharmacol 81:161–164

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    Erecinska M, Cherian S, Silver IA (2004) Energy metabolism in mammalian brain during development. Prog Neurobiol 73:397–445

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Ersahin M, Sehirli O, Toklu HZ, Suleymanoglu S, Emekli-Alturfan E, Yarat A, Tatlidede E, Yegen BC, Sener G (2009) Melatonin improves cardiovascular function and ameliorates renal, cardiac and cerebral damage in rats with renovascular hypertension. J Pineal Res 47:97–106

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Ersahin M, Toklu HZ, Cetinel S, Yuksel M, Erzik C, Berkman MZ, Yegen BC, Sener G (2010) Alpha lipoic acid alleviates oxidative stress and preserves blood brain permeability in rats with subarachnoid hemorrhage. Neurochem Res 35:418–428

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Ersahin M, Toklu HZ, Erzik C, Cetinel S, Akakin D, Velioglu-Ogunc A, Tetik S, Ozdemir ZN, Sener G, Yegen BC (2010) The anti-inflammatory and neuroprotective effects of ghrelin in subarachnoid hemorrhage-induced oxidative brain damage in rats. J Neurotrauma 27:1143–1155

    Article  PubMed  Google Scholar 

  24. 24.

    Fiske CH, Subbarow Y (1925) The colorimetric determination of phosphorus. J Biol Chem 66:375–400

    CAS  Google Scholar 

  25. 25.

    Gaetani P, Lombardi D (1992) Brain damage following subarachnoid hemorrhage: the imbalance between anti-oxidant systems and lipid peroxidative processes. J Neurosurg Sci 36:1–10

    CAS  PubMed  Google Scholar 

  26. 26.

    Gaetani P, Pasqualin A, Rodriguez y Baena R, Borasio E, Marzatico F (1998) Oxidative stress in the human brain after subarachnoid hemorrhage. J Neurosurg 89:748–754

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Garcia JH, Liu KF, Yoshida Y, Lian J, Chen S, del Zoppo GJ (1994) Influx of leukocytes and platelets in an evolving brain infarct (Wistar rat). Am J Pathol 144:188–199

    CAS  PubMed  Google Scholar 

  28. 28.

    Germano A, d’Avella D, Cicciarello R, Hayes RL, Tomasello F (1992) Blood–brain barrier permeability changes after experimental subarachnoid hemorrhage. Neurosurgery 30:882–886

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    Haklar GYM, Yalçın AS (1998) Chemiluminescence in the measurement of free radicals. Theory and application on a tissue injury model. Marmara Med J 11:56–60

    Google Scholar 

  30. 30.

    Hillegass LM, Griswold DE, Brickson B, Albrightson-Winslow C (1990) Assessment of myeloperoxidase activity in whole rat kidney. J Pharmacol Methods 24:285–295

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Hosseinzadeh H, Parvardeh S (2004) Anticonvulsant effects of thymoquinone, the major constituent of Nigella sativa seeds, in mice. Phytomedicine 11:56–64

    CAS  Article  PubMed  Google Scholar 

  32. 32.

    Hosseinzadeh H, Parvardeh S, Asl MN, Sadeghnia HR, Ziaee T (2007) Effect of thymoquinone and Nigella sativa seeds oil on lipid peroxidation level during global cerebral ischemia–reperfusion injury in rat hippocampus. Phytomedicine 14:621–627

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    Hosseinzadeh H, Parvardeh S, Nassiri-Asl M, Mansouri MT (2005) Intracerebroventricular administration of thymoquinone, the major constituent of Nigella sativa seeds, suppresses epileptic seizures in rats. Med Sci Monit 11:BR106–BR110

    CAS  PubMed  Google Scholar 

  34. 34.

    Ismail M, Al-Naqeep G, Chan KW (2010) Nigella sativa thymoquinone-rich fraction greatly improves plasma antioxidant capacity and expression of antioxidant genes in hypercholesterolemic rats. Free Radic Biol Med 48:664–672

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    Kanter M (2008) Effects of Nigella sativa and its major constituent, thymoquinone on sciatic nerves in experimental diabetic neuropathy. Neurochem Res 33:87–96

    CAS  Article  PubMed  Google Scholar 

  36. 36.

    Kanter M (2008) Nigella sativa and derived thymoquinone prevents hippocampal neurodegeneration after chronic toluene exposure in rats. Neurochem Res 33:579–588

    CAS  Article  PubMed  Google Scholar 

  37. 37.

    Kanter M, Coskun O, Kalayci M, Buyukbas S, Cagavi F (2006) Neuroprotective effects of Nigella sativa on experimental spinal cord injury in rats. Hum Exp Toxicol 25:127–133

    CAS  Article  PubMed  Google Scholar 

  38. 38.

    Karaoglan A, Akdemir O, Barut S, Kokturk S, Uzun H, Tasyurekli M, Colak A (2008) The effects of resveratrol on vasospasm after experimental subarachnoidal hemorrhage in rats. Surg Neurol 70:337–343

    Article  PubMed  Google Scholar 

  39. 39.

    Kim YK, Lee SH, Goldinger JM, Hong SK (1986) Effect of ethanol on organic ion transport in rabbit kidney. Toxicol Appl Pharmacol 86:411–420

    CAS  Article  PubMed  Google Scholar 

  40. 40.

    Kiris T, Karasu A, Yavuz C, Erdem T, Unal F, Hepgul K, Baloglu H (1999) Reversal of cerebral vasospasm by the nitric oxide donor SNAP in an experimental model of subarachnoid haemorrhage. Acta Neurochir (Wien) 141:1323–1328, discussion 1328–1329

    CAS  Article  Google Scholar 

  41. 41.

    Kozniewska E, Michalik R, Rafalowska J, Gadamski R, Walski M, Frontczak-Baniewicz M, Piotrowski P, Czernicki Z (2006) Mechanisms of vascular dysfunction after subarachnoid hemorrhage. J Physiol Pharmacol 57(Suppl 11):145–160

    PubMed  Google Scholar 

  42. 42.

    Kurella E, Kukley M, Tyulina O, Dobrota D, Matejovicova M, Mezesova V, Boldyrev A (1997) Kinetic parameters of Na/K–ATPase modified by free radicals in vitro and in vivo. Ann NY Acad Sci 834:661–665

    CAS  Article  PubMed  Google Scholar 

  43. 43.

    Lowry OHRN, Farr AL, Randall RJ (1951) Protein measurements with the folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  44. 44.

    Marzatico F, Gaetani P, Cafe C, Spanu G, Rodriguez y Baena R (1993) Antioxidant enzymatic activities after experimental subarachnoid hemorrhage in rats. Acta Neurol Scand 87:62–66

    CAS  Article  PubMed  Google Scholar 

  45. 45.

    Ohara Y, Peterson TE, Harrison DG (1993) Hypercholesterolemia increases endothelial superoxide anion production. J Clin Invest 91:2546–2551

    CAS  Article  PubMed  Google Scholar 

  46. 46.

    Park IS, Meno JR, Witt CE, Chowdhary A, Nguyen TS, Winn HR, Ngai AC, Britz GW (2009) Impairment of intracerebral arteriole dilation responses after subarachnoid hemorrhage. Laboratory investigation. J Neurosurg 111:1008–1013

    Article  PubMed  Google Scholar 

  47. 47.

    Petzold GC, Einhaupl KM, Dirnagl U, Dreier JP (2003) Ischemia triggered by spreading neuronal activation is induced by endothelin-1 and hemoglobin in the subarachnoid space. Ann Neurol 54:591–598

    CAS  Article  PubMed  Google Scholar 

  48. 48.

    Reading HW, Isbir T (1980) The role of cation-activated ATPases in transmitter release from the rat iris. Q J Exp Physiol Cogn Med Sci 65:105–116

    CAS  PubMed  Google Scholar 

  49. 49.

    Reiter RJ, Tan DX, Manchester LC, Qi W (2001) Biochemical reactivity of melatonin with reactive oxygen and nitrogen species: a review of the evidence. Cell Biochem Biophys 34:237–256

    CAS  Article  PubMed  Google Scholar 

  50. 50.

    Sabri M, Kawashima A, Ai J, Macdonald RL (2008) Neuronal and astrocytic apoptosis after subarachnoid hemorrhage: a possible cause for poor prognosis. Brain Res 1238:163–171

    CAS  Article  PubMed  Google Scholar 

  51. 51.

    Sayed-Ahmed MM, Nagi MN (2007) Thymoquinone supplementation prevents the development of gentamicin-induced acute renal toxicity in rats. Clin Exp Pharmacol Physiol 34:399–405

    CAS  Article  PubMed  Google Scholar 

  52. 52.

    Schubert GA, Thome C (2008) Cerebral blood flow changes in acute subarachnoid hemorrhage. Front Biosci 13:1594–1603

    CAS  Article  PubMed  Google Scholar 

  53. 53.

    Sethi G, Ahn KS, Aggarwal BB (2008) Targeting nuclear factor-kappa B activation pathway by thymoquinone: role in suppression of antiapoptotic gene products and enhancement of apoptosis. Mol Cancer Res 6:1059–1070

    CAS  Article  PubMed  Google Scholar 

  54. 54.

    Stark G (2005) Functional consequences of oxidative membrane damage. J Membr Biol 205:1–16

    CAS  Article  PubMed  Google Scholar 

  55. 55.

    Tang WH, Chen Z, Liu Z, Zhang JH, Xi G, Feng H (2008) The effect of ecdysterone on cerebral vasospasm following experimental subarachnoid hemorrhage in vitro and in vivo. Neurol Res 30:571–580

    CAS  Article  PubMed  Google Scholar 

  56. 56.

    Terzi A, Coban S, Yildiz F, Ates M, Bitiren M, Taskin A, Aksoy N (2010) Protective effects of Nigella sativa on intestinal ischemia–reperfusion injury in rats. J Invest Surg 23:21–27

    Article  PubMed  Google Scholar 

  57. 57.

    Toklu HZ, Hakan T, Biber N, Solakoglu S, Ogunc AV, Sener G (2009) The protective effect of alpha lipoic acid against traumatic brain injury in rats. Free Radic Res 43:658–667

    CAS  Article  PubMed  Google Scholar 

  58. 58.

    Toklu HZ, Uysal MK, Kabasakal L, Sirvanci S, Ercan F, Kaya M (2009) The effects of riluzole on neurological, brain biochemical, and histological changes in early and late term of sepsis in rats. J Surg Res 152:238–248

    CAS  Article  PubMed  Google Scholar 

  59. 59.

    Wyse AT, Streck EL, Barros SV, Brusque AM, Zugno AI, Wajner M (2000) Methylmalonate administration decreases Na+, K+–ATPase activity in cerebral cortex of rats. NeuroReport 11:2331–2334

    CAS  Article  PubMed  Google Scholar 

  60. 60.

    Yang Y, Zhang XJ, Yin J, Li LT (2008) Brain damage related to hemorrhagic transformation following cerebral ischemia and the role of K ATP channels. Brain Res 1241:168–175

    CAS  Article  PubMed  Google Scholar 

  61. 61.

    Yang YB, Piao YJ (2003) Effects of resveratrol on secondary damages after acute spinal cord injury in rats. Acta Pharmacol Sin 24:703–710

    CAS  PubMed  Google Scholar 

  62. 62.

    Yildiz F, Coban S, Terzi A, Ates M, Aksoy N, Cakir H, Ocak AR, Bitiren M (2008) Nigella sativa relieves the deleterious effects of ischemia reperfusion injury on liver. World J Gastroenterol 14:5204–5209

    Article  PubMed  Google Scholar 

Download references

Conflicts of interest


Author information



Corresponding author

Correspondence to Goksel Sener.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Erşahin, M., Toklu, H.Z., Akakin, D. et al. The effects of Nigella sativa against oxidative injury in a rat model of subarachnoid hemorrhage. Acta Neurochir 153, 333–341 (2011).

Download citation


  • Subarachnoid hemorrhage
  • Nigella sativa
  • Oxidative stress
  • Cerebral ischemia
  • Cerebral vasospasm