Skip to main content

Advertisement

Log in

Radiosurgery for large cerebral arteriovenous malformations

  • Clinical Article
  • Published:
Acta Neurochirurgica Aims and scope Submit manuscript

Abstract

Background

Radiosurgery is an effective treatment option for patients with small to medium sized arteriovenous malformations. However, it is not generally accepted as an effective tool for larger (>14 cm3) arteriovenous malformations because of low obliteration rates. The authors assessed the applicability and effectiveness of radiosurgery for large arteriovenous malformations.

Method

We performed a retrospective study of 46 consecutive patients with more than 14 ml of arteriovenous malformations who were treated with radiosurgery using a linear accelerator and gamma knife (GK). They were grouped according to their initial clinical presentation—17 presented with and 29 without haemorrhage. To assess the effect of embolization, these 46 patients were also regrouped into two subgroups—25 with and 21 without preradiosurgical embolization. Arteriovenous malformations found to have been incompletely obliterated after 3-year follow-up neuroimaging studies were re-treated using a GK.

Findings

The mean treatment volume was 29.5 ml (range, 14.0–65.0) and the mean marginal dose was 14.1 Gy (range, 10.0–20.0). The mean clinical follow-up periods after initial radiosurgery was 78.1 months (range, 34.0–166.4). Depending on the results of the angiography, 11 of 33 patients after the first radiosurgery and three of four patients after the second radiosurgery showed complete obliteration. Twenty patients received the second radiosurgery and their mean volume was significantly smaller than their initial volume (P = 0.017). The annual haemorrhage rate after radiosurgery was 2.9% in the haemorrhage group (mean follow-up 73.3 months) and 3.1% in the nonhaemorrhage group (mean follow-up 66.5 months) (P = 0.941). Preradiosurgical embolization increased the risk of haemorrhage for the nonhaemorrhage group (HR, 28.03; 95% CI, 1.08–6,759.64; P = 0.039), whereas it had no effect on the haemorrhage group. Latency period haemorrhage occurred in eight patients in the embolization group, but in no patient in the nonembolization group (P = 0.004).

Conclusions

Radiosurgery may be a safe and effective arteriovenous malformation treatment method that is worth considering as an alternative treatment option for a large arteriovenous malformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. al-Rodhan NR, Sundt TM Jr, Piepgras DG, Nichols DA, Rufenacht D, Stevens LN (1993) Occlusive hyperemia: a theory for the hemodynamic complications following resection of intracerebral arteriovenous malformations. J Neurosurg 78:167–175

    PubMed  CAS  Google Scholar 

  2. Batjer HH, Devous MD Sr, Meyer YJ, Purdy PD, Samson DS (1988) Cerebrovascular hemodynamics in arteriovenous malformation complicated by normal perfusion pressure breakthrough. Neurosurgery 22:503–509

    PubMed  CAS  Google Scholar 

  3. Brown RD Jr, Wiebers DO, Forbes G, O’Fallon WM, Piepgras DG, Marsh WR, Maciunas RJ (1988) The natural history of unruptured intracranial arteriovenous malformations. J Neurosurg 68:352–357

    PubMed  Google Scholar 

  4. Castel JP, Kantor G (2001) [Postoperative morbidity and mortality after microsurgical exclusion of cerebral arteriovenous malformations. Current data and analysis of recent literature]. Neurochirurgie 47:369–383

    PubMed  CAS  Google Scholar 

  5. Chang SD, Shuster DL, Steinberg GK, Levy RP, Frankel K (1997) Stereotactic radiosurgery of arteriovenous malformations: pathologic changes in resected tissue. Clin Neuropathol 16:111–116

    PubMed  CAS  Google Scholar 

  6. Colombo F, Pozza F, Chierego G, Casentini L, De Luca G, Francescon P (1994) Linear accelerator radiosurgery of cerebral arteriovenous malformations: an update. Neurosurgery 34:14–20 discussion 20–11

    Article  PubMed  CAS  Google Scholar 

  7. Ellis TL, Friedman WA, Bova FJ, Kubilis PS, Buatti JM (1998) Analysis of treatment failure after radiosurgery for arteriovenous malformations. J Neurosurg 89:104–110

    PubMed  CAS  Google Scholar 

  8. Flickinger JC, Pollock BE, Kondziolka D, Lunsford LD (1996) A dose–response analysis of arteriovenous malformation obliteration after radiosurgery. Int J Radiat Oncol Biol Phys 36:873–879

    PubMed  CAS  Google Scholar 

  9. Gobin YP, Laurent A, Merienne L, Schlienger M, Aymard A, Houdart E, Casasco A, Lefkopoulos D, George B, Merland JJ (1996) Treatment of brain arteriovenous malformations by embolization and radiosurgery. J Neurosurg 85:19–28

    PubMed  CAS  Google Scholar 

  10. Halbach VV, Higashida RT, Hieshima GB, Norman D (1987) Normal perfusion pressure breakthrough occurring during treatment of carotid and vertebral fistulas. AJNR Am J Neuroradiol 8:751–756

    PubMed  CAS  Google Scholar 

  11. Han PP, Ponce FA, Spetzler RF (2003) Intention-to-treat analysis of Spetzler–Martin grades IV and V arteriovenous malformations: natural history and treatment paradigm. J Neurosurg 98:3–7

    PubMed  Google Scholar 

  12. Jungreis CA, Horton JA, Hecht ST (1989) Blood pressure changes in feeders to cerebral arteriovenous malformations during therapeutic embolization. AJNR Am J Neuroradiol 10:575–577

    PubMed  CAS  Google Scholar 

  13. Karlsson B, Lindquist C, Steiner L (1997) Prediction of obliteration after gamma knife surgery for cerebral arteriovenous malformations. Neurosurgery 40:425–430 discussion 430–421

    Article  PubMed  CAS  Google Scholar 

  14. Kihlstrom L, Guo WY, Karlsson B, Lindquist C, Lindqvist M (1997) Magnetic resonance imaging of obliterated arteriovenous malformations up to 23 years after radiosurgery. J Neurosurg 86:589–593

    PubMed  CAS  Google Scholar 

  15. Kjellberg RN, Hanamura T, Davis KR, Lyons SL, Adams RD (1983) Bragg-peak proton-beam therapy for arteriovenous malformations of the brain. N Engl J Med 309:269–274

    PubMed  CAS  Google Scholar 

  16. Kondziolka D, Lunsford LD, Flickinger JC (1993) Gamma knife stereotactic radiosurgery for cerebral vascular malformations. In: Alexander E, Loeffler JS, Lunsford LD (eds) Stereotactic radiosurgery. McGraw-Hill, New York, p 136–146

    Google Scholar 

  17. Lindqvist M, Karlsson B, Guo WY, Kihlstrom L, Lippitz B, Yamamoto M (2000) Angiographic long-term follow-up data for arteriovenous malformations previously proven to be obliterated after gamma knife radiosurgery. Neurosurgery 46:803–808 discussion 809–810

    Article  PubMed  CAS  Google Scholar 

  18. Lindvall P, Bergstrom P, Lofroth PO, Hariz MI, Henriksson R, Jonasson P, Bergenheim AT (2003) Hypofractionated conformal stereotactic radiotherapy for arteriovenous malformations. Neurosurgery 53:1036–1042 discussion 1042–1033

    Article  PubMed  Google Scholar 

  19. Major O, Szeifert GT, Kemeny AA (2007) Physiological and pathological observations on rat middle cerebral arteries and human AVM tissue cultures following single high-dose gamma irradiation. Prog Neurol Surg 20:375–387

    Article  PubMed  Google Scholar 

  20. Martin NA, Vinters HV (1995) Arteriovenous malformations. In: Carter LF, Spetzler RF, Hamilton MG (eds) Neurovascular surgery. McGraw-Hill, New York, pp 875–903

    Google Scholar 

  21. Maruyama K, Kawahara N, Shin M, Tago M, Kishimoto J, Kurita H, Kawamoto S, Morita A, Kirino T (2005) The risk of hemorrhage after radiosurgery for cerebral arteriovenous malformations. N Engl J Med 352:146–153

    Article  PubMed  CAS  Google Scholar 

  22. Mast H, Young WL, Koennecke HC, Sciacca RR, Osipov A, Pile-Spellman J, Hacein-Bey L, Duong H, Stein BM, Mohr JP (1997) Risk of spontaneous haemorrhage after diagnosis of cerebral arteriovenous malformation. Lancet 350:1065–1068

    Article  PubMed  CAS  Google Scholar 

  23. Mathis JA, Barr JD, Horton JA, Jungreis CA, Lunsford LD, Kondziolka DS, Vincent D, Pentheny S (1995) The efficacy of particulate embolization combined with stereotactic radiosurgery for treatment of large arteriovenous malformations of the brain. AJNR Am J Neuroradiol 16:299–306

    PubMed  CAS  Google Scholar 

  24. Miyawaki L, Dowd C, Wara W, Goldsmith B, Albright N, Gutin P, Halbach V, Hieshima G, Higashida R, Lulu B, Pitts L, Schell M, Smith V, Weaver K, Wilson C, Larson D (1999) Five year results of LINAC radiosurgery for arteriovenous malformations: outcome for large AVMS. Int J Radiat Oncol Biol Phys 44:1089–1106

    PubMed  CAS  Google Scholar 

  25. Pan DH, Guo WY, Chung WY, Shiau CY, Chang YC, Wang LW (2000) Gamma knife radiosurgery as a single treatment modality for large cerebral arteriovenous malformations. J Neurosurg 93(Suppl 3):113–119

    PubMed  Google Scholar 

  26. Paulsen RD, Steinberg GK, Norbash AM, Marcellus ML, Marks MP (1999) Embolization of basal ganglia and thalamic arteriovenous malformations. Neurosurgery 44:991–996 discussion 996–997

    Article  PubMed  CAS  Google Scholar 

  27. Pollock BE, Flickinger JC (2002) A proposed radiosurgery-based grading system for arteriovenous malformations. J Neurosurg 96:79–85

    PubMed  Google Scholar 

  28. Pollock BE, Flickinger JC, Lunsford LD, Bissonette DJ, Kondziolka D (1996) Hemorrhage risk after stereotactic radiosurgery of cerebral arteriovenous malformations. Neurosurgery 38:652–659 discussion 659–661

    Article  PubMed  CAS  Google Scholar 

  29. Pollock BE, Gorman DA, Coffey RJ (2003) Patient outcomes after arteriovenous malformation radiosurgical management: results based on a 5- to 14-year follow-up study. Neurosurgery 52:1291–1296 discussion 1296–1297

    Article  PubMed  Google Scholar 

  30. Pollock BE, Kline RW, Stafford SL, Foote RL, Schomberg PJ (2000) The rationale and technique of staged-volume arteriovenous malformation radiosurgery. Int J Radiat Oncol Biol Phys 48:817–824

    PubMed  CAS  Google Scholar 

  31. Pollock BE, Kondziolka D, Lunsford LD, Bissonette D, Flickinger JC (1996) Repeat stereotactic radiosurgery of arteriovenous malformations: factors associated with incomplete obliteration. Neurosurgery 38:318–324

    Article  PubMed  CAS  Google Scholar 

  32. Rauch RA, Vinuela F, Dion J, Duckwiler G, Amos EC, Jordan SE, Martin N, Jensen ME, Bentson J, Thibault L (1992) Preembolization functional evaluation in brain arteriovenous malformations: the superselective Amytal test. AJNR Am J Neuroradiol 13:303–308

    PubMed  CAS  Google Scholar 

  33. Redekop G, TerBrugge K, Montanera W, Willinsky R (1998) Arterial aneurysms associated with cerebral arteriovenous malformations: classification, incidence, and risk of hemorrhage. J Neurosurg 89:539–546

    PubMed  CAS  Google Scholar 

  34. Schneider BF, Eberhard DA, Steiner LE (1997) Histopathology of arteriovenous malformations after gamma knife radiosurgery. J Neurosurg 87:352–357

    PubMed  CAS  Google Scholar 

  35. Sirin S, Kondziolka D, Niranjan A, Flickinger JC, Maitz AH, Lunsford LD (2006) Prospective staged volume radiosurgery for large arteriovenous malformations: indications and outcomes in otherwise untreatable patients. Neurosurgery 58:17–27 discussion 17–27

    Article  PubMed  Google Scholar 

  36. Sorimachi T, Takeuchi S, Koike T, Minakawa T, Abe H, Tanaka R (1995) Blood pressure monitoring in feeding arteries of cerebral arteriovenous malformations during embolization: a preventive role in hemodynamic complications. Neurosurgery 37:1041–1047 discussion 1047–1048

    Article  PubMed  CAS  Google Scholar 

  37. Spetzler RF, Martin NA (1986) A proposed grading system for arteriovenous malformations. J Neurosurg 65:476–483

    Article  PubMed  CAS  Google Scholar 

  38. Stapf C, Mast H, Sciacca RR, Choi JH, Khaw AV, Connolly ES, Pile-Spellman J, Mohr JP (2006) Predictors of hemorrhage in patients with untreated brain arteriovenous malformation. Neurology 66:1350–1355

    Article  PubMed  CAS  Google Scholar 

  39. Taylor CL, Dutton K, Rappard G, Pride GL, Replogle R, Purdy PD, White J, Giller C, Kopitnik TA Jr, Samson DS (2004) Complications of preoperative embolization of cerebral arteriovenous malformations. J Neurosurg 100:810–812

    PubMed  Google Scholar 

  40. Touboul E, Al Halabi A, Buffat L, Merienne L, Huart J, Schlienger M, Lefkopoulos D, Mammar H, Missir O, Meder JF, Laurent A, Housset M (1998) Single-fraction stereotactic radiotherapy: a dose–response analysis of arteriovenous malformation obliteration. Int J Radiat Oncol Biol Phys 41:855–861

    PubMed  CAS  Google Scholar 

  41. Vernimmen FJ, Slabbert JP, Wilson JA, Fredericks S, Melvill R (2005) Stereotactic proton beam therapy for intracranial arteriovenous malformations. Int J Radiat Oncol Biol Phys 62:44–52

    Article  PubMed  Google Scholar 

  42. Veznedaroglu E, Andrews DW, Benitez RP, Downes MB, Werner-Wasik M, Rosenstock J, Curran WJ Jr, Rosenwasser RH (2004) Fractionated stereotactic radiotherapy for the treatment of large arteriovenous malformations with or without previous partial embolization. Neurosurgery 55:519–530 discussion 530–511

    Article  PubMed  Google Scholar 

  43. Young WL, Kader A, Pile-Spellman J, Ornstein E, Stein BM (1994) Arteriovenous malformation draining vein physiology and determinants of transnidal pressure gradients. The Columbia University AVM Study Project. Neurosurgery 35:389–395 discussion 395–386

    Article  PubMed  CAS  Google Scholar 

  44. Zabel-du Bois A, Milker-Zabel S, Huber P, Schlegel W, Debus J (2006) Linac-based radiosurgery or hypofractionated stereotactic radiotherapy in the treatment of large cerebral arteriovenous malformations. Int J Radiat Oncol Biol Phys 64:1049–1054

    PubMed  Google Scholar 

Download references

Acknowledgements

This study was partially supported by grants from the Clinical Research Institute, Seoul National University Hospital and the Korea Brain and Spinal Cord Research Foundation. The funding sources had no role in study design, data collection, data analysis, data interpretation, or writing of the report. We thank Byung Joo Park, M.D. and Medical Research Collaborating Center Seoul National University Hospital for their assistance in our statistical analysis. Moon Hee Han, M.D. helped us to review the neuroradiologic findings of large cerebral arteriovenous malformations.

Conflicts of interest notification

The authors have no conflicts of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Gyu Kim.

Additional information

Comment

Stereotactic radiosurgery for large cerebral arteriovenous malformation

Gamma Knife surgery has been very successfull at treating small to medium sized arteriovenous malformations (AVM’s). Obliteration rates for AVM’s less than 3 cm in maximal diameter are approximately 80 to 85%. However, large AVM`s are less likely to be “cured” by single fraction stereotactically delivered radiosurgery and such treatment is attended by higher complication risks: The authors could demonstrate that preradiosurgical embolization increased significantly the risk of haemorrhage for their nonhaemorrhage subgroup, whereas it had no effect on the haemorrhage subgroup. In addition, latency period haemorrhage occurred significantly more in their embolization subgroup, but in no patient in the nonembolization subgroup.

Large or even giant cerbrovascular formations need therefore special attentions as their clinical behaviour is different from small or medium sized lesions. It is this fact that the makes this study of special interest. The authors results may let us conclude that for large AVMs, multiple embolization procedures may be required to avoid changing blood flow patterns in the brain too rapidly or drastically (1). This may underline that the treatment of brain AVMs can only be greatly enhanced by adopting a team approach utilizing combined modality therapy. Using this strategy, a treatment plan is devised to offer the lowest risk yet highest chance of obliterating the lesion.

References

1. Schaller B, Graf R. Cerebral venous infarction: The pathophysiological concept. Cerebrovasc Dis 2004; 18:179–188

B. Schaller

Stockholm

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, SY., Kim, D.G., Chung, HT. et al. Radiosurgery for large cerebral arteriovenous malformations. Acta Neurochir (Wien) 151, 113–124 (2009). https://doi.org/10.1007/s00701-008-0173-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00701-008-0173-5

Keywords

Navigation