Skip to main content
Log in

Community detection algorithms for recommendation systems: techniques and metrics

  • Regular Paper
  • Published:
Computing Aims and scope Submit manuscript

Abstract

In the early days of social networking, a community was typically viewed as a collection of user pro-files sharing common interests and likes. This community continued to grow by searching for, pro-posing, and adding new members who shared similar characteristics but were unlikely to cause conflict with existing members. Today, things have shifted dramatically. Social networking platforms are not limited to creating identical user profiles: the enormous amounts of data acquired each day have enabled the prediction and recommendation of relationships, habits, and everyday activities such as shopping, dining, and holiday destinations. A long time ago, the topic of community detection drew considerable attention, and communities are shown as clusters within a more extensive network. Community detection has also become a broader problem as graph databases have grown in popularity, as has the diversity of personal information and dynamic behavior. Community detection is a beneficial method for maintaining graph data sets effectively. Community detection has become critical as online communication has grown in popularity, personalization drifts have varied, and internet users’ activities have gotten more unpredictable. This article examined all community detection techniques and the parametric data needed to evaluate them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Lei X, Qian X (2016) Rating prediction based on social sentiment from textual reviews. IEEE Trans Multimed 18(9):1910–1921. https://doi.org/10.1109/TMM.2016.2575738

    Article  Google Scholar 

  2. Yang J, Leskovec J (2013) Overlapping community detection at scale: a nonnegative matrix factorization approach. In: WSDM 2013—proceedings of 6th ACM international conference on web search data min, pp 587–596. https://doi.org/10.1145/2433396.2433471

  3. Sánchez-Oro J, Duarte A (2018) Iterated Greedy algorithm for performing community detection in social networks. Futur Gener Comput Syst 88:785–791. https://doi.org/10.1016/j.future.2018.06.010

    Article  Google Scholar 

  4. Plantié M, Crampes M (2012) Social media retrieval. Comput Commun Netw. https://doi.org/10.1007/978-1-4471-4555-4

    Article  Google Scholar 

  5. Yang Z, Algesheimer R, Tessone CJ (2016) A comparative analysis of community detection algorithms on artificial networks. Sci Rep. https://doi.org/10.1038/srep30750

    Article  Google Scholar 

  6. Fortunato S (2010) Community detection in graphs. Phys Rep 486(3–5):75–174. https://doi.org/10.1016/j.physrep.2009.11.002

    Article  Google Scholar 

  7. Flake GW, Tarjan RE, Tsioutsiouliklis K (2004) Graph clustering and minimum cut trees. Internet Math 1(4):385–408. https://doi.org/10.1080/15427951.2004.10129093

    Article  MATH  Google Scholar 

  8. Gregory S (2009) Finding overlapping communities using disjoint community detection algorithms. In: Complex networks. Springer, pp 47–61

  9. Gao C, Ma Z, Zhang AY, Zhou HH (2018) Community detection in degree-corrected block models. Ann Stat 46(5):2153–2185. https://doi.org/10.1214/17-AOS1615

    Article  MATH  Google Scholar 

  10. Shi C, Yu PS, Yan Z, Huang Y, Wang B (2014) Comparison and selection of objective functions in multiobjective community detection. Comput Intell 30(3):562–582. https://doi.org/10.1111/coin.12007

    Article  Google Scholar 

  11. Hagen L, Kahng AB (1992) New spectral methods for ratio cut partitioning and clustering. IEEE Trans Comput Des Integr Circuits Syst 11(9):1074–1085. https://doi.org/10.1109/43.159993

    Article  Google Scholar 

  12. Schaub MT, Delvenne JC, Rosvall M, Lambiotte R (2017) The many facets of community detection in complex networks. Appl Netw Sci. https://doi.org/10.1007/s41109-017-0023-6

    Article  Google Scholar 

  13. Pothen A, Simon HD, Liou KP (1989) Partitioning alex sparse pothen matrices with eigenvectors of graphs, p 27

  14. Pons Pacal LM (2005) Computing communities in large networks using random walks. Download.Springer.Com, pp 284–293

  15. Newman MEJ (2004) Fast algorithm for detecting community structure in networks. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Top 69(6):5. https://doi.org/10.1103/PhysRevE.69.066133

    Article  Google Scholar 

  16. Von Luxburg U (2007) A tutorial on spectral clustering. Stat Comput 17(4):395–416. https://doi.org/10.1007/s11222-007-9033-z

    Article  Google Scholar 

  17. Newman MEJJ, Girvan M, Newman MEJJ (2004) Fast algorithm for detecting community structure in networks. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Top. 69(23):5. https://doi.org/10.1073/pnas.0601602103

    Article  Google Scholar 

  18. Cheng Z, Ding Y, Zhu L, Kankanhalli M (2018) Aspect-aware latent factor model: rating prediction with ratings and reviews, pp 639–648. https://doi.org/10.1145/3178876.3186145

  19. Asur S, Parthasarathy S, Ucar D (2009) An event-based framework for characterizing the evolutionary behavior of interaction graphs. ACM Trans Knowl Discov Data 10(1145/1631162):1631164

    Google Scholar 

  20. Backstrom L, Huttenlocher D, Kleinberg J, Lan X (2006) Group formation in large social networks: membership, growth, and evolution. In: Proceedings of the 12th ACM SIGKDD international conference on knowledge discovery and data mining, pp 44–54. https://doi.org/10.1145/1150402.1150412

  21. Dunlavy DM, Kolda TG, Acar E (2011) Temporal link prediction using matrix and tensor factorizations. ACM Trans Knowl Discov Data. doi 10(1145/1921632):1921636

    Google Scholar 

  22. Fu W, Song L, Xing EP (2009) Dynamic mixed membership blockmodel for evolving networks. In: Proceedings of the 26th annual international conference on machine learning, pp 329–336. https://doi.org/10.1145/1553374.1553416

  23. Xu KS, Hero AO (2014) Dynamic stochastic blockmodels for time-evolving social networks. IEEE J Sel Top Signal Process 8(4):552–562. https://doi.org/10.1109/JSTSP.2014.2310294

    Article  Google Scholar 

  24. Mankad S, Michailidis G (2013) Structural and functional discovery in dynamic networks with non-negative matrix factorization. Phys Rev E 88(4):42812. https://doi.org/10.1103/PhysRevE.88.042812

    Article  Google Scholar 

  25. Kelley S (2009) Overlapping communities in large-scale, vol 2009

  26. Stephen Kelley MM-I, Goldberg M, Konstantin MAW (2012) Defining and discovering communities in social networks. Optim Appl 57:463–505. https://doi.org/10.1007/978-1-4614-0754-6

    Article  MATH  Google Scholar 

  27. Chakraborty T, Chakraborty A (2013) OverCite: finding overlapping communities in citation network. In: Proceedings of the 2013 IEEE/ACM international conference on advances in social networks analysis and mining, pp 1124–1131. https://doi.org/10.1145/2492517.2500255

  28. Su X et al (2022) A comprehensive survey on community detection with deep learning. IEEE Trans Neural Netw Learn Syst. https://doi.org/10.1109/TNNLS.2021.3137396

    Article  Google Scholar 

  29. Jin D et al (2021) A survey of community detection approaches: from statistical modeling to deep learning. IEEE Trans Knowl Data Eng. https://doi.org/10.1109/tkde.2021.3104155

    Article  Google Scholar 

  30. Huang X, Chen D, Ren T, Wang D (2021) A survey of community detection methods in multilayer networks, vol 35. Springer, p 1

    MATH  Google Scholar 

  31. Naik D, Ramesh D, Gandomi AH, Babu Gorojanam N (2022) Parallel and distributed paradigms for community detection in social networks: a methodological review. Expert Syst Appl 187:115956. https://doi.org/10.1016/j.eswa.2021.115956

    Article  Google Scholar 

  32. Li S, Jiang L, Wu X, Han W, Zhao D, Wang Z (2021) A weighted network community detection algorithm based on deep learning. Appl Math Comput 401:126012. https://doi.org/10.1016/j.amc.2021.126012

    Article  MATH  Google Scholar 

  33. Holland PW, Laskey KB, Leinhardt S (1983) Stochastic blockmodels: first steps. Social Netw 5(2):109–37. https://doi.org/10.1016/0378-8733(83)90021-7

    Article  Google Scholar 

  34. Nepal S, Paris C, Bista SK (2012) Srec: a social behaviour based recommender for online communities. In: Herder E, Yacef K, Chen L, Weibelzahl S (eds) Workshop and poster proceedings of 20th conference on user modeling, adaptation, and personalization, Montreal, Canada, July 16–20, 2012, volume 872 of CEUR workshop proceedings. CEUR-WS.org

  35. Nepal S, Paris C, Pour PA, Freyne J, Bista SK (2015) Interaction based recommendations for online communities. ACM Trans Internet Technol 15(2):6:1-6:21

    Article  Google Scholar 

  36. Cazabet R, Amblard F (2014) Dynamic community detection. In: Alhajj R, Rokne J (eds) Encyclopedia of social network analysis and mining. Springer, New York, pp 404–414

    Chapter  Google Scholar 

  37. Narayanan A, Chandramohan M, Venkatesan R, Chen L, Liu Y, Jaiswal S (2017) graph2vec: learning distributed representations of graph. CoRR, abs/1707.0. arXiv:1707.05005

  38. Devooght R, Bersini H (2017) Long and short-term recommendations with recurrent neural networks. In: Proceedings of the 25th conference on user modeling, adaptation and personalization, association for computing machinery, pp 13–21. https://doi.org/10.1145/3079628.3079670

  39. Jannach D, Ludewig M, Lerche L (2017) Session-based item recommendation in e-commerce: on short-term intents, reminders, trends and discounts. User Model User Adapt Interact 27(3–5):351–392. https://doi.org/10.1007/s11257-017-9194-1

    Article  Google Scholar 

  40. Edizel B, Bonchi F, Hajian S, Panisson A, Tassa T (2020) FaiRecSys: mitigating algorithmic bias in recommender systems. Int J Data Sci Anal 9(2):197–213. https://doi.org/10.1007/s41060-019-00181-5

    Article  Google Scholar 

  41. Wu S, Chow TWS (2004) Clustering of the self-organizing map using a clustering validity index based on inter-cluster and intra-cluster density. Pattern Recognit. 37(2):175–188. https://doi.org/10.1016/S0031-3203(03)00237-1

    Article  MATH  Google Scholar 

  42. Albert R, Barabási AL (2002) Statistical mechanics of complex networks. Rev Mod Phys 74(1):47–97. https://doi.org/10.1103/RevModPhys.74.47

    Article  MATH  Google Scholar 

  43. Berahmand K, Bouyer A, Vasighi M (2018) Community detection in complex networks by detecting and expanding core nodes through extended local similarity of nodes. IEEE Trans Comput Soc Syst 5(4):1021–1033. https://doi.org/10.1109/TCSS.2018.2879494

    Article  Google Scholar 

  44. Palla G, Derényi I, Farkas I, Vicsek T (2005) Uncovering the overlapping community structure of complex networks in nature and society. Nature 435(7043):814–818. https://doi.org/10.1038/nature03607

    Article  Google Scholar 

  45. Ali SS, Bentayeb F, Missaoui R, Boussaid O (2014) An efficient method for community detection. https://doi.org/10.1007/978-3-319-08326-1

  46. Lancichinetti A, Saramäki J, Kivelä M, Fortunato S (2010) Characterizing the community structure of complex networks. PLoS One. https://doi.org/10.1371/journal.pone.0011976

    Article  Google Scholar 

  47. Fred ALN, Jain AK (2003) Robust data clustering. Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit 2:5. https://doi.org/10.1109/cvpr.2003.1211462

    Article  Google Scholar 

  48. Danon L, Díaz-Guilera A, Duch J, Arenas A (2005) Comparing community structure identification. J Stat Mech Theory Exp 09008(9):219–228. https://doi.org/10.1088/1742-5468/2005/09/P09008

    Article  Google Scholar 

  49. Moscato V, Picariello A, Sperlí G (2019) Community detection based on game theory. Eng Appl Artif Intell 85(July):773–782. https://doi.org/10.1016/j.engappai.2019.08.003

    Article  Google Scholar 

  50. De Cruz-lovera C, De L (2019) Analysis of research topics and scientific collaborations in energy saving using bibliometric techniques and community detection

  51. Wu L, Zhang Q, Chen CH, Guo K, Wang D (2020) Deep learning techniques for community detection in social networks. IEEE Access 8:96016–96026. https://doi.org/10.1109/ACCESS.2020.2996001

    Article  Google Scholar 

  52. Rodrigues F, Ferreira B (2016) Product recommendation based on shared customer’s behaviour. Proc Comput Sci 100:136–146. https://doi.org/10.1016/j.procs.2016.09.133

    Article  Google Scholar 

  53. Lancichinetti A, Fortunato S, Radicchi F (2008) Benchmark graphs for testing community detection algorithms. Phys Rev E Stat Nonlinear Soft Matter Phys 78(4):1–5. https://doi.org/10.1103/PhysRevE.78.046110

    Article  Google Scholar 

  54. Getting Started with Community Detection in Graphs and Networks. https://www.analyticsvidhya.com/blog/2020/04/community-detection-graphs-networks/

  55. Hastie T, Tibshirani R, Friedman J (2009) Model assessment and selection

  56. Kaufman L, Rousseeuw PJ (2009) Finding groups in data: an introduction to cluster analysis, vol 344. Wiley

    MATH  Google Scholar 

  57. Rousseeuw PJ, Kaufman L, Trauwaert E (1996) Fuzzy clustering using scatter matrices. Comput Stat Data Anal 23(1):135–151. https://doi.org/10.1016/S0167-9473(96)00026-6

    Article  MATH  Google Scholar 

  58. Maity S, Rath SK (2014) Extended Clique percolation method to detect overlapping community structure. In: Proceedings of 2014 International conference advanced computer communication and informatics, ICACCI 2014, pp 31–37. https://doi.org/10.1109/ICACCI.2014.6968420

  59. Arab M, Afsharchi M (2014) Community detection in social networks using hybrid merging of sub-communities. J Netw Comput Appl 40(1):73–84. https://doi.org/10.1016/j.jnca.2013.08.008

    Article  Google Scholar 

  60. Prasad C (2015) A survey on community detection algorithms in large scale real world networks. In: 2nd International conference on computing for sustainable global development (INDIACom). IEEE, pp 1323–1327

  61. Li H, Deng K, Cui J, Dong Z, Ma J, Huang J (2018) Hidden community identification in location-based social network via probabilistic venue sequences. Inf Sci (Ny) 422:188–203. https://doi.org/10.1016/j.ins.2017.09.019

    Article  Google Scholar 

  62. Dolgikh D, Jelínek I (2015) Graph-based music recommendation approach using social network analysis and community detection method. ACM Int Conf Proc Ser 1008:221–227. https://doi.org/10.1145/2812428.2812453

    Article  Google Scholar 

  63. Ferreira LN, Zhao L (2016) Time series clustering via community detection in networks. Inf Sci (Ny) 326:227–242. https://doi.org/10.1016/j.ins.2015.07.046

    Article  MATH  Google Scholar 

  64. Yoldemir B, Ng B, Abugharbieh R (2016) Stable overlapping replicator dynamics for brain community detection. IEEE Trans Med Imaging 35(2):529–538. https://doi.org/10.1109/TMI.2015.2480864

    Article  Google Scholar 

  65. Ghorbani M, Rabiee HR, Khodadadi A (2016) Bayesian overlapping community detection in dynamic networks, vol 3, no 2, pp 1–10. arXiv:1605.02288

  66. Liu X, Wei YM, Wang J, Wang WJ, He DX, Song ZJ (2016) Community detection enhancement using non-negative matrix factorization with graph regularization. Int J Mod Phys B 30(20):1–18. https://doi.org/10.1142/S0217979216501307

    Article  MATH  Google Scholar 

  67. Nguyen HH (2017) Clustering categorical data using community detection techniques. Comput Intell Neurosci. https://doi.org/10.1155/2017/8986360

    Article  Google Scholar 

  68. Zhang QZYLW (2020) A real-time recommender system design based on spark streaming

  69. Hajiabadi M, Zare H, Bobarshad H (2017) IEDC: an integrated approach for overlapping and non-overlapping community detection. Knowl Based Syst 123:188–199. https://doi.org/10.1016/j.knosys.2017.02.018

    Article  Google Scholar 

  70. Guerrero M, Montoya FG, Baños R, Alcayde A, Gil C (2018) Community detection in national-scale high voltage transmission networks using genetic algorithms. Adv Eng Inform 38(July):232–241. https://doi.org/10.1016/j.aei.2018.07.001

    Article  Google Scholar 

  71. Bello-Orgaz G, Salcedo-Sanz S, Camacho D (2018) A multi-objective genetic algorithm for overlapping community detection based on edge encoding. Inf Sci (Ny) 462:290–314. https://doi.org/10.1016/j.ins.2018.06.015

    Article  Google Scholar 

  72. Malhotra D, Chug A (2021) A modified label propagation algorithm for community detection in attributed networks. Int J Inf Manag Data Insights 1(2):100030. https://doi.org/10.1016/j.jjimei.2021.100030

    Article  Google Scholar 

  73. Souravlas S, Anastasiadou S, Katsavounis S (2021) A survey on the recent advances of deep community detection. Appl Sci 11(16):1–20. https://doi.org/10.3390/app11167179

    Article  Google Scholar 

  74. Chen MR, Chen BP, Zeng GQ, Di L, Chu P (2020) An adaptive fractional-order BP neural network based on extremal optimization for handwritten digits recognition. Neurocomputing 391:260–272. https://doi.org/10.1016/j.neucom.2018.10.090

    Article  Google Scholar 

  75. Boettcher S, Perçus AG (2003) Extremal optimization: an evolutionary local-search algorithm. Oper Res Comput Sci Interfaces Ser 21:61–77. https://doi.org/10.1007/978-1-4615-1043-7

    Article  Google Scholar 

  76. Duch J, Arenas A (2005) Community detection in complex networks using extremal optimization. Phys Rev E Stat Nonlinear Soft Matter Phys 72(2):1–4. https://doi.org/10.1103/PhysRevE.72.027104

    Article  Google Scholar 

  77. Ding J, Azizbek S, Sun Y, Tan P, Wang F (2021) Detecting overlapping communities in networks with extremal optimization. Int J Innov Comput Inf Control 17(1):355–368. https://doi.org/10.24507/ijicic.17.01.355

    Article  Google Scholar 

  78. Newman MEJ (2006) Modularity and community structure in networks. Proc Natl Acad Sci 103(23):8577–8582. https://doi.org/10.1073/pnas.0601602103

    Article  Google Scholar 

  79. Newman MEJ (2004) Fast algorithm for detecting community structure in networks. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics 69(6):5. https://doi.org/10.1103/PhysRevE.69.066133

    Article  Google Scholar 

  80. Clauset A, Newman MEJ, Moore C (2004) Finding community structure in very large networks. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Top 70(6):6. https://doi.org/10.1103/PhysRevE.70.066111

    Article  Google Scholar 

  81. Wakita K, Toshiyuki T (2007) Finding community structure in mega-scale social networks: [Extended Abstract]. 16th International world wide web conference, WWW2007, pp 1275–76. https://doi.org/10.1145/1242572.1242805

  82. Tasgin M, Bingol H (2007) Community detection in complex networks using genetic algorithms. ArXiv Preprint ArXiv:0711.0491

  83. Zachary WW (2009) Flow model for conflict an information fission in small groups. Small 33(4):452–73

    Google Scholar 

  84. Newman MEJ (2004) Detecting community structure in networks. Eur Phys J B 38(2):321–330

    Article  Google Scholar 

  85. Liu X et al (2007) Effective algorithm for detecting community structure in complex networks based on GA and clustering. In: Yong S et al (eds) Computational science—ICCS. Springer, Berlin, pp 657–64

  86. Manuscript A (2008) Nihms35572, 433(7028), pp 895–900

  87. Hu F, Liu Y (2015) A novel algorithm infomap-SA of detecting communities in complex networks. J Commun 10(7):503–511. https://doi.org/10.12720/jcm.10.7.503-511

    Article  Google Scholar 

  88. Sartakhti JS, Afrabandpey H, Saraee M (2017) Simulated annealing least squares twin support vector machine (SA-LSTSVM) for pattern classification. Soft Comput 21(15):4361–4373. https://doi.org/10.1007/s00500-016-2067-4

    Article  Google Scholar 

  89. He J, Chen D, Sun C (2016) A fast simulated annealing strategy for community detection in complex networks. IEEE Int Conf Comput Commun 5(27):2380–2384

    Google Scholar 

  90. Xin Y, Xie Z-Q, Yang J (2016) An adaptive random walk sampling method on dynamic community detection. Expert Syst Appl 58:10–19. https://doi.org/10.1016/j.eswa.2016.03.033

    Article  Google Scholar 

  91. The Random Walk algorithm. https://neo4j.com/docs/graph-algorithms/current/labs-algorithms/random-walk/

  92. Azizifard N (2014) Social network clustering. Int J Inf Technol Comput Sci 6(1):76–81. https://doi.org/10.5815/ijitcs.2014.01.09

    Article  Google Scholar 

  93. Hopcroft J, Khan O, Kulis B, Selman B (2004) Tracking evolving communities in large linked networks. Proc Natl Acad Sci U S A 101(SUPPL. 1):5249–5253. https://doi.org/10.1073/pnas.0307750100

    Article  Google Scholar 

  94. Palla G, Barabási AL, Vicsek T (2007) Quantifying social group evolution. Nature 446(7136):664–667. https://doi.org/10.1038/nature05670

    Article  Google Scholar 

  95. Wang Y, Wu B, Du N (2008) Community evolution of social network: feature, algorithm and model, 60402011 [Online]. Available: arXiv:0804.4356

  96. Rosvall M, Bergstrom CT (2010) Mapping change in large networks. PLoS One. https://doi.org/10.1371/journal.pone.0008694

    Article  Google Scholar 

  97. Chen W, Liu Z, Sun X, Wang Y (2010) A game-theoretic framework to identify overlapping communities in social networks. Data Min Knowl Discov 21(2):224–240. https://doi.org/10.1007/s10618-010-0186-6

    Article  Google Scholar 

  98. Wang Z, Li Z, Yuan G, Sun Y, Rui X, Xiang X (2018) Tracking the evolution of overlapping communities in dynamic social networks. Knowl Based Syst 157:81–97. https://doi.org/10.1016/j.knosys.2018.05.026

    Article  Google Scholar 

  99. Dhouioui Z (2014) Tracking dynamic community evolution in social.pdf, no. Asonam, pp 764–770

  100. Newman MEJ, Girvan M (2004) Finding and evaluating community structure in networks. Phys Rev E Stat Nonlinear Soft Matter Phys 69(22):1–16. https://doi.org/10.1103/PhysRevE.69.026113

    Article  Google Scholar 

  101. Gopalan PK, Blei DM (2013) Efficient discovery of overlapping communities in massive networks. Proc Natl Acad Sci U S A 110(36):14534–14539. https://doi.org/10.1073/pnas.1221839110

    Article  MATH  Google Scholar 

  102. Macropol K, Singh A (2010) Scalable discovery of best clusters on large graphs. Proc VLDB Endow 3(1):693–702. https://doi.org/10.14778/1920841.1920930

    Article  Google Scholar 

  103. Raghavan UN, Albert R, Kumara S (2007) Near linear time algorithm to detect community structures in large-scale networks. Phys Rev E Stat Nonlinear Soft Matter Phys 76(3):1–12. https://doi.org/10.1103/PhysRevE.76.036106

    Article  Google Scholar 

  104. Evans TS, Lambiotte R (2009) Line graphs, link partitions, and overlapping communities. Phys Rev E Stat Nonlinear Soft Matter Phys 80(1):1–9. https://doi.org/10.1103/PhysRevE.80.016105

    Article  Google Scholar 

  105. Nicosia V, Mangioni G, Carchiolo V, Malgeri M (2009) Extending the definition of modularity to directed graphs with overlapping communities. J Stat Mech Theory Exp 3:2009. https://doi.org/10.1088/1742-5468/2009/03/P03024

    Article  Google Scholar 

  106. Sun PG (2015) Community detection by fuzzy clustering. Phys A Stat Mech Appl 419:408–416. https://doi.org/10.1016/j.physa.2014.10.009

    Article  Google Scholar 

  107. Porter MA, Onnela J-P, Mucha PJ (2009) Communities in networks, pp 0–26 [Online]. Available: arXiv:0902.3788

  108. Luo W, Yan Z, Bu C, Zhang D (2020) Community detection by fuzzy relations. IEEE Trans Emerg Top Comput 8(2):478–492. https://doi.org/10.1109/TETC.2017.2751101

    Article  Google Scholar 

  109. Riolo MA, Cantwell GT, Reinert G, Newman MEJ (2017) Efficient method for estimating the number of communities in a network. Phys Rev E 96(3):1–13. https://doi.org/10.1103/PhysRevE.96.032310

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manoj Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choudhary, C., Singh, I. & Kumar, M. Community detection algorithms for recommendation systems: techniques and metrics. Computing 105, 417–453 (2023). https://doi.org/10.1007/s00607-022-01131-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00607-022-01131-z

Keywords

Navigation