Abstract
The issue of traffic mismanagement is getting bad to worse as the trend of urbanization is increasing and posing significant threats to the urban areas. This paper addresses this issue of traffic mismanagement by proposing a Fog-Cloud centric Internet of Things (IoT)-based collaborative framework that enables machine learning-based situation-aware traffic management. This framework monitors the traffic dynamics at the fog layer for providing real-time analytics to the cloud and enabling the traffic situation-aware routing of the vehicles. Whereas the framework at the cloud layer determines the situation-aware analytics by predicting Waiting Time (WaT), Waiting Queue Length (WQueL) and next green phase duration (G) for each Traffic Movement Signal Point (TMSP) based on the real-time data and analytics provided by the fog layer. The road-infrastructure hosted fog layer classifies the In-schedule Reachability Status (IRS) that determines the ability of the vehicle to reach the respective TMSP down the lane before the start of the next green phase. After classifying all such vehicles on a lane by the fog layer, the cloud layer predicts the optimal duration of the next green phase at that respective TMSP to reduce the traffic congestion on the respective junction point and subsequently provides these area-wide analytics to the vehicle hosted fog nodes and traffic controllers on the respective junction points. The vehicles use these analytics for enabling situation-aware vehicle routing functionality by selecting a time optimized path and enabling balanced traffic load on all possible paths. The framework employs Logistic Regression (LR) for IRS classification at the fog layer and Artificial Neural Network (ANN) for traffic prediction at the respective TMSP at the cloud layer. The result depiction acknowledges LR’s efficiency compared to other employed classifiers in terms of various statistical parameters. The optimal performance of ANN at the learning rate (LeR) of 0.1, momentum rate (MoR) of 0.95, and 500 epochs depict the prediction efficiency of ANN as compared to other used prediction approach. The contribution of this paper is two functionalities-based working of fog computing for providing real-time and situation-aware traffic analytics, adaptive traffic movement phase planning, time optimized navigation, and optimal traffic load balancing.
This is a preview of subscription content, access via your institution.








References
Agarwal S, Swami BL et al (2011) Road traffic noise, annoyance and community health survey-a case study for an Indian city. Noise Health 13(53):272
Al Mamari, A.R.M.H., Al Mamari, H., Kazmi, S.I.A., Pandey, J., Al Hinai, S.: Iot based smart parking and traffic management system for middle east college. In: 2019 4th MEC international conference on big data and smart city (ICBDSC) 1–6. IEEE (2019)
Alazab M, Venkatraman S (2013) Detecting malicious behaviour using supervised learning algorithms of the function calls. Int. J. Electron Secur. Digit Forensics 5(2):90–109
Altman DG, Bland JM (2005) Standard deviations and standard errors. BMJ 331(7521):903
Azab, A., Alazab, M., Aiash, M.: Machine learning based botnet identification traffic. In: 2016 IEEE Trustcom/BigDataSE/ISPA 1788–1794. IEEE (2016)
Babatunde SO, Perera S (2017) Analysis of traffic revenue risk factors in bot road projects in developing countries. Transp. Policy 56:41–49
Barth M, Boriboonsomsin K (2008) Real-world carbon dioxide impacts of traffic congestion. Transp. Res. Rec. 2058(1):163–171
Bhagchandani K, Augustine DP (2019) Iot based heart monitoring and alerting system with cloud computing and managing the traffic for an ambulance in india. Int. J. Electr. Comput. Eng. 9(6):5068
Collotta M, Bello LL, Pau G (2015) A novel approach for dynamic traffic lights management based on wireless sensor networks and multiple fuzzy logic controllers. Exp. Syst. Appl. 42(13):5403–5415
Darwish TS, Bakar KA (2018) Fog based intelligent transportation big data analytics in the internet of vehicles environment: motivations, architecture, challenges, and critical issues. IEEE Access 6:15679–15701
Desa, U.: Revision of world urbanization prospects. UN Department of Economic and Social Affairs 16, (2018)
Dreiseitl S, Ohno-Machado L (2002) Logistic regression and artificial neural network classification models: a methodology review. J. Biomed. Inform. 35(5–6):352–359
Farrell K (2017) The rapid urban growth triad: a new conceptual framework for examining the urban transition in developing countries. Sustainability 9(8):1407
Fitriani W, Siahaan APU (2016) Comparison between weka and salford systemin data mining software. Int. J. Mob. Comput. Appl. 3(4):1–4
Gao K, Zhang Y, Su R, Yang F, Suganthan PN, Zhou M (2018) Solving traffic signal scheduling problems in heterogeneous traffic network by using meta-heuristics. IEEE Trans. Intell. Transp. Syst. 20(9):3272–3282
Gomides TS, Robson E, de Souza AM, Souza FS, Villas LA, Guidoni DL (2020) An adaptive and distributed traffic management system using vehicular ad-hoc networks. Comput. Commun. 159:317–330
Guo J, Huang W, Williams BM (2014) Adaptive kalman filter approach for stochastic short-term traffic flow rate prediction and uncertainty quantification. Trans. Res. Part C: Emerg. Technol. 43:50–64
Hashim N, Idris F, Kadmin AF, Sidek SSJ (2019) Automatic traffic light controller for emergency vehicle using peripheral interface controller. Int. J. Electr. Comput. Eng. 9(3):1788
Huang Y, Wang L, Hou Y, Zhang W, Zhang Y (2018) A prototype iot based wireless sensor network for traffic information monitoring. Int. J. Pavement Res. Technol. 11(2):146–152
Huang YS, Weng YS, Zhou M (2015) Design of traffic safety control systems for emergency vehicle preemption using timed petri nets. IEEE Trans. Intell. Transp. Syst. 16(4):2113–2120
Jose, C., Grace, K.V.: Real-time traffic signal management system for emergency vehicles using embedded systems. In: Advances in communication systems and networks 161–171. Springer (2020)
Kang, L., Poslad, S., Wang, W., Li, X., Zhang, Y., Wang, C.: A public transport bus as a flexible mobile smart environment sensing platform for iot. In: 2016 12th International Conference on Intelligent Environments (IE) 1–8. IEEE (2016)
Kannan S, Dhiman G, Natarajan Y, Sharma A, Mohanty SN, Soni M, Easwaran U, Ghorbani H, Asheralieva A, Gheisari M (2021) Ubiquitous vehicular ad-hoc network computing using deep neural network with iot-based bat agents for traffic management. Electronics 10(7):785
Kaur A, Sahil, Sood SK (2021) Cloud-fog assisted energy efficient architectural paradigm for disaster evacuation. Inf Syst 101732. https://doi.org/10.1016/j.is.2021.101732. https://www.sciencedirect.com/science/article/pii/S0306437921000089
Kechagias EP, Gayialis SP, Konstantakopoulos GD, Papadopoulos GA (2019) Traffic flow forecasting for city logistics: a literature review and evaluation. Int. J. Decis. Support Syst. 4(2):159–176
Khekare, G.S.: Design of emergency system for intelligent traffic system using vanet. In: International Conference on Information Communication and Embedded Systems (ICICES2014) 1–7. IEEE (2014)
Kumar PM, Manogaran G, Sundarasekar R, Chilamkurti N, Varatharajan R et al (2018) Ant colony optimization algorithm with internet of vehicles for intelligent traffic control system. Comput. Netw. 144:154–162
Li C, Shimamoto S (2011) An open traffic light control model for reducing vehicles’ co2 emissions based on etc vehicles. IEEE Trans. Veh. Technol. 61(1):97–110
Li L, Lv Y, Wang FY (2016) Traffic signal timing via deep reinforcement learning. IEEE/CAA J. Automatica Sinica 3(3):247–254. https://doi.org/10.1109/JAS.2016.7508798
Li, R., Cheng, C., Qi, M., Lai, W.: Design of dynamic vehicle routing system based on online map service. In: Service Systems and Service Management (ICSSSM), 2016 13th International Conference on 1–5. IEEE (2016)
Matharia N, Dave S (2018) Smart traffic management system using iot. Int. J. Comput. Eng. Appl. 12:1–4
Megalingam, R.K., Mohan, V., Leons, P., Shooja, R., Ajay, M.: Smart traffic controller using wireless sensor network for dynamic traffic routing and over speed detection. In: 2011 IEEE Global Humanitarian Technology Conference 528–533. IEEE (2011)
Memon I, Arain QA, Memon MH, Mangi FA, Akhtar R (2017) Search me if you can: multiple mix zones with location privacy protection for mapping services. Int. J. Commun. Syst. 30(16):e3312
Miz, V., Hahanov, V.: Smart traffic light in terms of the cognitive road traffic management system (ctms) based on the internet of things. In: Proceedings of IEEE east-west design & test symposium (EWDTS 2014) 1–5. IEEE (2014)
Ning Z, Huang J, Wang X (2019) Vehicular fog computing: enabling real-time traffic management for smart cities. IEEE Wirel. Commun. 26(1):87–93
de Oliveira LFP, Manera LT, Da Luz PDG (2020) Development of a smart traffic light control system with real-time monitoring. IEEE Intern. Things J. 8(5):3384–3393
Pallottino, S., Scutella, M.G.: Shortest path algorithms in transportation models: classical and innovative aspects. In: Equilibrium and advanced transportation modelling 245–281. Springer (1998)
Plotnikov A, Kravchenko P, Kotikov J (2017) Classification investigations of traffic management schemes having conflict loading at the signal-controlled road junctions. Trans. Res. Procedia 20:511–515
Puviarasi, R., Ramalingam, M., Chinnavan, E., Kalayan, A.: Design of intelligent traffic controlling system using rf transponder. In: 2018 Fourth International Conference on Advances in Electrical, Electronics, Information, Communication and Bio-Informatics (AEEICB) 1–5. IEEE (2018)
Qi L, Zhou M, Luan W (2015) Emergency traffic-light control system design for intersections subject to accidents. IEEE Trans. Intell. Transp. Syst. 17(1):170–183
Raskar, C., Shikha, N.: A prototype of the dynamic traffic management: smart barricade system. In: 2019 IEEE international conference on advanced networks and telecommunications systems (ANTS) 1–5. IEEE (2019)
Rauber PE, Fadel SG, Falcao AX, Telea AC (2016) Visualizing the hidden activity of artificial neural networks. IEEE Trans. Vis. Comput. Gr. 23(1):101–110
Rida, N., Ouadoud, M., Hasbi, A., Chebli, S.: Adaptive traffic light control system using wireless sensors networks. In: 2018 IEEE 5th International Congress on Information Science and Technology (CiSt) 552–556. IEEE (2018)
Sahil, Sood SK (2020) Fog-cloud centric iot-based cyber physical framework for panic oriented disaster evacuation in smart cities. Earth Sci Inf. https://doi.org/10.1007/s12145-020-00481-6
Sahil, Sood SK (2021) Fog-assisted energy efficient cyber physical system for panic-based evacuation during disasters. Comput J. https://doi.org/10.1093/comjnl/bxaa201
Schrank, D., Eisele, B., Lomax, T., Bak, J.: 2015 urban mobility scorecard (2015)
Shaamili, R., Ranjith, R., Supriya, P.: Intelligent traffic light system for unhampered mobility of emergency vehicles. In: 2018 Second International Conference on Intelligent Computing and Control Systems (ICICCS) 360–363. IEEE (2018)
Shen L, Liu R, Yao Z, Wu W, Yang H (2018) Development of dynamic platoon dispersion models for predictive traffic signal control. IEEE Trans. Intell. Transp. Syst. 20(2):431–440
Sood SK, Sood V, Mahajan I, Sahil (2020) Fog-Cloud assisted IoT-based hierarchical approach for controlling dengue infection. Comput J. https://doi.org/10.1093/comjnl/bxaa005
Sood SK, SoodV, Mahajan I, Sahil (2021) An intelligent healthcare systemfor predicting and preventing dengue virus infection. Computing. https://doi.org/10.1007/s00607-020-00877-8
Tan T, Bao F, Deng Y, Jin A, Dai Q, Wang J (2020) Cooperative deep reinforcement learning for large-scale traffic grid signal control. IEEE Trans. Cybern. 50(6):2687–2700. https://doi.org/10.1109/TCYB.2019.2904742
Wang F, Zhu M, Wang M, Khosravi MR, Ni Q, Yu S, Qi L (2020) 6g-enabled short-term forecasting for large-scale traffic flow in massive iot based on time-aware locality-sensitive hashing. IEEE Intern. Things J. 8(7):5321–5331
Wei W, Wu H, Ma H (2019) An autoencoder and lstm-based traffic flow prediction method. Sensors 19(13):2946
Xu X, Zhang X, Liu X, Jiang J, Qi L, Bhuiyan MZA (2020) Adaptive computation offloading with edge for 5g-envisioned internet of connected vehicles. IEEE Trans. Intell. Trans. Syst. 22(8):5213–5222
Zhang P, Zhou M, Fortino G (2018) Security and trust issues in fog computing: a survey. Futur. Gener. Comput. Syst. 88:16–27
Zhao S, Zhao Q, Bai Y, Li S (2019) A traffic flow prediction method based on road crossing vector coding and a bidirectional recursive neural network. Electronics 8(9):1006
Zheng Y, Liu Q, Chen E, Ge Y, Zhao JL (2016) Exploiting multi-channels deep convolutional neural networks for multivariate time series classification. Front. Comp. Sci. 10(1):96–112
Zhou, B., Cao, J., Wu, H.: Adaptive traffic light control of multiple intersections in wsn-based its. In: 2011 IEEE 73rd vehicular technology conference (VTC Spring) 1–5. IEEE (2011)
Zhou X, Li Y, Liang W (2020) Cnn-rnn based intelligent recommendation for online medical pre-diagnosis support. IEEE/ACM Trans. Comput. Biol. Bioinf. 18(3):912–921
Zhu L, Yu FR, Wang Y, Ning B, Tang T (2018) Big data analytics in intelligent transportation systems: A survey. IEEE Trans. Intell. Transp. Syst. 20(1):383–398
Acknowledgements
Prof. Chang’s work is partly supported by VC Research (VCR 0000168).
Author information
Authors and Affiliations
Corresponding authors
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Sahil, Sood, S.K. & Chang, V. Fog-Cloud-IoT centric collaborative framework for machine learning-based situation-aware traffic management in urban spaces. Computing (2022). https://doi.org/10.1007/s00607-022-01120-2
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s00607-022-01120-2
Keywords
- Machine learning
- Internet of things (IoT)
- Cloud computing
- Fog computing
- Intelligent transportation system (ITS)
- Logistic regression
- Artificial neural network (ANN)
Mathematics Subject Classification
- 68T99