Skip to main content
Log in

Stochastic model-driven capacity planning framework for multi-access edge computing

  • Regular Paper
  • Published:
Computing Aims and scope Submit manuscript

Abstract

Multi-access edge computing (MEC) offers cloud computing capabilities and IT services situated at the Radio Access Network (RAN) in the mobile users’ proximity. Applications could offload their computation-intensive tasks to the MEC servers. Consequently, MEC significantly diminishes the mean response time and job rejection probability compared to conventional Mobile Cloud Computing (MCC). Cost-performance trade-off is one of the major concerns of the system designers. Low performance leads to the Service Level Agreement (SLA) violation and disappoints the service consumers. On the other hand, reaching high performance by augmenting the number of servers in the MEC and Cloud sides incur more infrastructure and other operational costs. In this paper, we formulate the mentioned cost-performance trade-off into an optimization problem. We demonstrate that the optimization problem is integer and non-linear. Moreover, we propose a capacity planning framework to determine the optimal number of servers in the MEC and Cloud sides, minimizing the Total Cost of Ownership (TCO) with SLA satisfaction. The proposed capacity planning framework gains from the simulated annealing algorithm to obtain a globally optimum solution. Furthermore, we deploy the stochastic performance model to measure mean response time and job rejection probability at each iteration. Numerical results reveal that the proposed framework determines the optimal solution within a reasonable time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Mell P, Grance T (2010) The NIST definition of cloud computing. Communications of the ACM 53(6):50

    Google Scholar 

  2. Buyya R, Yeo CS, Venugopal S, Broberg J, Brandic I (2009) Cloud computing and emerging IT platforms: Vision, hype, and reality for delivering computing as the 5th utility. Future Generation computer systems 25(6):599–616

    Article  Google Scholar 

  3. Foster I, Zhao Y, Raicu I, Lu S (2008) Cloud computing and grid computing 360-degree compared. In: Grid Computing Environments Workshop, 2008. GCE’08, pp 1–10. Ieee

  4. Wang Q, Ren K, Meng X (2012) When cloud meets ebay: Towards effective pricing for cloud computing. In: INFOCOM, 2012 Proceedings IEEE, pp 936–944. IEEE

  5. Zhang Q, Cheng L, Boutaba R (2010) Cloud computing: state-of-the-art and research challenges. Journal of internet services and applications 1(1):7–18

    Article  Google Scholar 

  6. Tak B-C, Urgaonkar B, Sivasubramaniam A (2011) To move or not to move: The economics of cloud computing. In: HotCloud

  7. Roy N, Dubey A, Gokhale A (2011) Efficient autoscaling in the cloud using predictive models for workload forecasting. In: Cloud Computing (CLOUD), 2011 IEEE International Conference On, pp 500–507. IEEE

  8. Fernando N, Loke SW, Rahayu W (2013) Mobile cloud computing : A survey. Future Generation Computer Systems 29(1):84–106. https://doi.org/10.1016/j.future.2012.05.023

    Article  Google Scholar 

  9. Wang Y, Chen R, Wang D-C (2015) A survey of mobile cloud computing applications: perspectives and challenges. Wireless Personal Communications 80(4):1607–1623

    Article  Google Scholar 

  10. Liu F, Shu P, Jin H, Ding L, Yu J, Niu D, Li B (2013) Gearing resource-poor mobile devices with powerful clouds: architectures, challenges, and applications. IEEE Wireless communications 20(3):14–22

    Article  Google Scholar 

  11. Kekki S, Featherstone W, Fang Y, Kuure P, Li A, Ranjan A, Purkayastha D, Jiangping F, Frydman D, Verin G et al (2018) Mec in 5g networks. ETSI white paper 28(2018):1–28

    Google Scholar 

  12. Shojaee R, Yazdani N (2020) Modeling and performance analysis of smart map application in the multi-access edge computing paradigm. Pervasive and Mobile Computing 69:101280

    Article  Google Scholar 

  13. Bolch G, Greiner S, De Meer H, Trivedi KS (2006) Queueing networks and markov chains: modeling and performance evaluation with computer science applications. In John Wiley and Sons, pp 1–878

  14. Ghosh R, Longo F, Xia R, Naik VK, Trivedi KS (2013) Stochastic model driven capacity planning for an infrastructure-as-a-service cloud. IEEE Transactions on Services Computing 7(4):667–680

    Article  Google Scholar 

  15. Raei H (2017) Capacity planning framework for mobile network operator cloud using analytical performance model. International Journal of Communication Systems 30(17):3353

    Article  Google Scholar 

  16. Ko S-W, Han K, Huang K (2018) Wireless networks for mobile edge computing: Spatial modeling and latency analysis. IEEE Transactions on Wireless Communications 17(8):5225–5240

    Article  Google Scholar 

  17. Kuang Q, Gong J, Chen X, Ma X (2020) Analysis on computation-intensive status update in mobile edge computing. IEEE Transactions on Vehicular Technology 69(4):4353–4366

    Article  Google Scholar 

  18. Sun X, Ansari N (2016) PRIMAL: Profit maximization avatar placement for mobile edge computing. In: Communications (ICC), 2016 IEEE International Conference On, pp 1–6. IEEE

  19. Mohan N, Zhou P, Govindaraj K, Kangasharju J (2017) Managing data in computational edge clouds. In: Proceedings of the Workshop on Mobile Edge Communications, pp 19–24

  20. Wong W, Zavodovski A, Zhou P, Kangasharju J (2019) Container deployment strategy for edge networking. In: Proceedings of the 4th Workshop on Middleware for Edge Clouds & Cloudlets, pp 1–6

  21. Mainkar V, Trivedi KS (1996) Sufficient conditions for existence of a fixed point in stochastic reward net-based iterative models. Software Engineering, IEEE Transactions on 22(9):640–653

    Article  Google Scholar 

  22. Trivedi KS, Sahner R (2009) SHARPE at the Age of Twenty Two. ACM SIGMETRICS Performance Evaluation Review 36(4):52–57

    Article  Google Scholar 

  23. Koomey J, Brill K, Turner P, Stanley J, Taylor B (2007) A simple model for determining true total cost of ownership for data centers. Uptime Institute White Paper, Version 2:2007

    Google Scholar 

  24. Kellerer H, Pferschy U, Pisinger D (2004) Introduction to np-completeness of knapsack problems. In: Knapsack Problems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24777-7_16

  25. Noghin V (2015) Linear scalarization in multi-criterion optimization. Scientific and Technical Information Processing 42(6):463–469

    Article  Google Scholar 

  26. Talbi E-G (2009) Metaheuristics: from design to implementation. In: John Wiley and Sons, Hoboken, New Jersey, pp 1–593

  27. Petrowski JDA, Taillard PSE (2006) Metaheuristics for hard optimization. Springer, Berlin

    MATH  Google Scholar 

  28. Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by simulated annealing. Science 220(4598):671–680. https://doi.org/10.1126/science.220.4598.671

    Article  MathSciNet  MATH  Google Scholar 

  29. Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E (1953) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092

    Article  MATH  Google Scholar 

  30. Blum A, Dan C, Seddighin S (2021) Learning complexity of simulated annealing. In: International Conference on Artificial Intelligence and Statistics, pp 1540–1548. PMLR

  31. Granville V, Krivánek M, Rasson J-P (1994) Simulated annealing: A proof of convergence. IEEE transactions on pattern analysis and machine intelligence 16(6):652–656

    Article  Google Scholar 

  32. Rossum Gv (1995) Python tutorial, technical report cs-r9526. Centrum voor Wiskunde en Informatica (CWI), Amsterdam

  33. Hunter JD (2007) Matplotlib: A 2d graphics environment. Computing in Science & Engineering 9(3):90–95. https://doi.org/10.1109/MCSE.2007.55

    Article  Google Scholar 

  34. U.S. Energy Information Administration. https://www.eia.gov Accessed (2020)

  35. Hardy D, Kleanthous M, Sideris I, Saidi AG, Ozer E, Sazeides Y (2013) An analytical framework for estimating tco and exploring data center design space. In: 2013 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS), pp 54–63. IEEE

  36. Farrington N, Andreyev A (2013) Facebook’s data center network architecture. In: 2013 Optical Interconnects Conference, pp 49–50. Citeseer

  37. Shojaee R, Yazdani N (2019) Modeling and performance evaluation of map layer loading in mobile edge computing paradigm. In: High-Performance Computing and Big Data Analysis, pp 228–239. Springer, Cham

  38. Xiao Y, Noreikis M, Ylä-Jaäiski A (2017) Qos-oriented capacity planning for edge computing. In: 2017 IEEE International Conference on Communications (ICC), pp 1–6. IEEE

  39. Pereira P, Araujo J, Torquato M, Dantas J, Melo C, Maciel P (2020) Stochastic performance model for web server capacity planning in fog computing. The Journal of Supercomputing 76(12):9533–9557

    Article  Google Scholar 

  40. Mao W, Akgul OU, Mehrabi A, Cho B, Xiao Y, Ylä-Jääski A (2022) Data-driven capacity planning for vehicular fog computing. IEEE Internet of Things Journal

  41. Shang S, Wang B, Jiang J, Wu Y, Zheng W (2011) An intelligent capacity planning model for cloud market. J. Internet Serv. Inf. Secur. 1(1):37–45

    Google Scholar 

  42. Kondo D, Javadi B, Malecot P, Cappello F, Anderson DP (2009) Cost-benefit analysis of cloud computing versus desktop grids. IPDPS 9:1–12

    Google Scholar 

  43. Hoang DT, Niyato D, Wang P (2012) Optimal admission control policy for mobile cloud computing hotspot with cloudlet. In: 2012 IEEE Wireless Communications and Networking Conference (WCNC), pp 3145–3149. IEEE

  44. Cen B, Hu C, Cai Z, Wu Z, Zhang Y, Liu J, Su Z (2022) A configuration method of computing resources for microservice-based edge computing apparatus in smart distribution transformer area. International Journal of Electrical Power & Energy Systems 138:107935

    Article  Google Scholar 

  45. Li X, Li Y, Liu T, Qiu J, Wang F (2009) The method and tool of cost analysis for cloud computing. In: 2009 IEEE International Conference on Cloud Computing, pp 93–100. IEEE

  46. Duan Q, Wang S, Ansari N (2020) Convergence of networking and cloud/edge computing: Status, challenges, and opportunities. IEEE Network 34(6):148–155

    Article  Google Scholar 

  47. Gauttam H, Pattanaik K, Bhadauria S, Saxena D et al (2022) A cost aware topology formation scheme for latency sensitive applications in edge infrastructure-as-a-service paradigm. Journal of Network and Computer Applications 199:103303

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Shojaee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shojaee, R., Yazdani, N. Stochastic model-driven capacity planning framework for multi-access edge computing. Computing 104, 2557–2579 (2022). https://doi.org/10.1007/s00607-022-01102-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00607-022-01102-4

Keywords

Mathematics Subject Classification

Navigation