Skip to main content
Log in

Parallelism of the finite-time dynamics method based on GPU

  • Regular Paper
  • Published:
Computing Aims and scope Submit manuscript

Abstract

The finite-time dynamics method is an effective tool exploring phase transition behavior in spin systems. In the paper, we design parallel version of this approach based on GPU. The performances of the GPU parallel algorithm for the Ising model and the Blume-Capel model are shown. The acceleration rate arrives at 221 as compared to the running time of CPU serial code for \(1024^{2}\) Ising model. Also we propose two meliorative schemes, including the reduction of global memory accesses and the recycling of random number, to reach the speed-ups of 239 times and 503 times, respectively. The influence of the mesh size on the efficiency of the GPU parallel simulations are discussed. Moreover, the critical temperatures and the critical exponents determined are in accord with theoretical analysis and previous numerical results from references, corroborating the reliability of this GPU parallel approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Videocard Benchmarks. https://www.videocardbenchmark.net/

  2. Weigel M (2011) Simulating spin models on GPU. Comput Phys Commun 182:1833

    Article  Google Scholar 

  3. Lu J, Gao S, Xiong W, Xu C (2020) Optimization of GPU parallel scheme for simulating ultrafast magnetization dynamics model. Comput Mater Sci 184:109924

    Article  Google Scholar 

  4. CUDA Toolkit Documentation v10.1.243. https://docs.nvidia.com/cuda

  5. Boer A (2014) GPU-based simulation of the long-range Potts model via parallel tempering. Comput Phys Commun 185:1932

    Article  Google Scholar 

  6. Bernaschi M, Fatica M, Parisi G, Parisi L (2012) Multi-GPU codes for spin systems simulations. Comput Phys Commun 183:1416

    Article  Google Scholar 

  7. Baity-Jesi M, Fernandez LA, Martin-Mayor V, Sanz JM (2014) Phase transition in three-dimensional Heisenberg spin glasses with strong random anisotropies through a multi-GPU parallelization. Phys Rev B 89:014202

    Article  Google Scholar 

  8. Manssen M, Hartmann AK (2015) Aging at the spin-glass/ferromagnet transition: Monte Carlo simulations using graphics processing units. Phys Rev B 91:174433

    Article  Google Scholar 

  9. Liu J, wang L, Zhang P (2021) Tropical Tensor Network for Ground States of Spin Glasses. Phys Rev Lett 126:090506

    Article  MathSciNet  Google Scholar 

  10. Ambrose MC, Stamps RL (2013) Monte Carlo simulation of the effects of higher-order anisotropy on the spin reorientation transition in the two-dimensional Heisenberg model with long-range interactions. Phys Rev B 87:184417

    Article  Google Scholar 

  11. Yin J, Landau DP (2012) Massively parallel Wang-Landau sampling on multiple GPUs. Comput Phys Commun 183:1568

    Article  Google Scholar 

  12. Obrecht C, Kuznik F, Tourancheau B, Roux J (2010) Multi-GPU implementation of the lattice Boltzmann method. Comput Math Appl 65:252–261

    Article  MathSciNet  Google Scholar 

  13. Li L ((2011)) Parallel implementations of hopfield neural networks on GPU. In: Distributed, parallel, and cluster computing [cs.DC]. HAL Id: dumas-00636458. https://dumas.ccsd.cnrs.fr/dumas-00636458

  14. Heimlich A, Mol ACA, Pereira CMNA (2011) GPU-based Monte Carlo simulation in neutron transport and finite differences heat equation evaluation. Prog Nucl Energ 53:229–239

    Article  Google Scholar 

  15. Shen W, Sun L, Wei D, Xu W, Wang H, Zhu X (2013) A hybrid parallel algorithm for computer simulation of Electrocardiogram based on a CPU-GPU cluster. In: 2013 IEEE/ACIS 12th international conference on computer and information science (ICIS), pp 167–171. https://doi.org/10.1109/ICIS.2013.6607835

  16. Ostler TA, Ellis MOA, Hinzke D, Nowak U (2014) Temperature-dependent ferromagnetic resonance via the Landau–Lifshitz–Bloch equation: application to FePt. Phys Rev B 90:094402

    Article  Google Scholar 

  17. Spiechowicz J, Kostur M, Machura L (2015) GPU accelerated Monte Carlo simulation of Brownian motors dynamics with CUDA. Comput Phys Commun 191:140–149

    Article  Google Scholar 

  18. Pinheiro A, Desterro F, Santos M, Schirru R (2017) GPU-based parallel computation in real-time odeling of atmospheric radionuclide dispersion. In: Nunes IL (ed) Advances in human factors and system interactions, advances in intelligent systems and computing 497. Springer International Publishing, Cham, pp 323–333

  19. Borowka S, Heinrich G, Jahn S, Jones SP, Kerner M, Schlenk J (2019) A GPU compatible quasi-Monte Carlo integrator interfaced to pySecDec. Comput Phys Commun 240:120–137

    Article  Google Scholar 

  20. Preis T, Virnau P, Paul W, Schneider JJ (2009) GPU accelerated Monte Carlo simulation of the 2D and 3D Ising model. J Comput Phys 228:4468

    Article  Google Scholar 

  21. Block B, Virnau P, Preis T (2010) Multi-GPU accelerated multi-spin Monte Carlo simulations of the 2D Ising model. Comput Phys Commun 181:1549

    Article  Google Scholar 

  22. Komura Y, Okabe Y (2012) GPU-based Swendsen-Wang multi-cluster algorithm for the simulation of two-dimensional classical spin systems. Comput Phys Commun 183:1155

    Article  Google Scholar 

  23. Lulli M, Bernaschi M, Parisi G (2015) Highly optimized simulations on single- and multi-GPU systems of the 3D Ising spin glass model. Comput Phys Commun 196:290

    Article  MathSciNet  Google Scholar 

  24. Navarro CA, Huang W, Deng Y (2016) Adaptive multi-GPU Exchange Monte Carlo for the 3D Random Field Ising Model. Comput Phys Commun 205:48

    Article  MathSciNet  Google Scholar 

  25. Yu L, Barash M, Weigel M, Borovsk\(\grave{y}\) W, Janke, Shchur LN (2017) GPU accelerated population annealing algorithm. Comput Phys Commun 220:341

  26. Zhong F (2002) Monte Carlo renormalization group study of the dynamic scaling of hysteresis in the two-dimensional Ising model. Phys Rev B 66:060401(R)

    Article  Google Scholar 

  27. Zhong F, Chen Q (2005) Theory of the dynamics of first-order phase transitions: unstable fixed points, exponents, and dynamical scaling. Phys Rev Lett 95:175701

    Article  Google Scholar 

  28. Zhong F (2011) Finite-time scaling and its applications to continuous phase transitions. In: Mordechai S (ed) Applications of Monte Carlo method in science and engineering, IntechOpen, England. https://doi.org/10.5772/15284

  29. Feng B, Yin S, Zhong F (2016) Theory of driven nonequilibrium critical phenomena. Phys Rev B 94:144103

    Article  Google Scholar 

  30. Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E (1953) Equation of state calculations by fast computing machines. J Chem Phys 21:1087

    Article  Google Scholar 

  31. Zhong F, Xu Z (2005) Dynamic Monte Carlo renormalization group determination of critical exponentswith linearly changing temperature. Phys Rev B 71:132402

    Article  Google Scholar 

  32. Gong S, Zhong F, Huang X, Fan S (2010) Finite-time scaling via linear driving. New J Phys 12:043036

    Article  Google Scholar 

  33. Xiong W, Zhong F, Yuan W, Fan S (2010) Critical behavior of a three-dimensional random-bond Ising model using finite-time scaling with extensive Monte Carlo renormalization-group method. Phys Rev E 81:051132

    Article  Google Scholar 

  34. Xiong W, Zhong F, Fan S (2012) Positive specific-heat critical exponent of a three-dimensional three-state random-bond Potts model. Comput Phys Commun 183:1162

    Article  Google Scholar 

  35. Xiong W, Dai Y (2012) Dynamical Monte Carlo studies of the three-dimensional bimodal random-field Ising model. J Stat Mech: Theory Exp P05018

  36. Xiong W, Xu C, Guo Z, Liu X (2014) Crossover effects in dilute magnetic materials by finite-time dynamics method. Phys A 405:352

    Article  MathSciNet  Google Scholar 

  37. Xiong W, Xu C (2019) Phase transition behavior in three-dimensional Gaussian distribution random-field Ising model with finite-time dynamics method. J Stat Mech: Theory Exp 023202

  38. Yin S, Mai P, Zhong F (2014) Nonequilibrium quantum criticality in open systems: the dissipation rate as an additional indispensable scaling variable. Phys Rev B 89:094108

    Article  Google Scholar 

  39. Hu Q, Yin S, Zhong F (2015) Scaling of the entanglement spectrum in driven critical dynamics. Phys Rev B 91:184109

    Article  Google Scholar 

  40. Xue M, Yin S, You L (2018) Universal driven critical dynamics across a quantum phase transition in ferromagnetic spinor atomic Bose-Einstein condensates. Phys Rev A 98:013619

    Article  Google Scholar 

  41. Xu C, Lu S, Kong Y, Xiong W (2021) The enhanced sampling in parallel finite-time dynamics method with replica exchange. Comput Phys Commun 263:107911

    Article  MathSciNet  Google Scholar 

  42. Crescenzo GD (1995) Recycling random bits in composed perfect zero-knowledge. In: Guillou LC, Quisquater J-J (eds) Advances in Cryptology, Lecture Notes in Computer Science 921. Springer-Verlag, Berlin, Heidelberg, pp 367–381

  43. Blundo C, Galdi C, Persiano P (1999) Randomness recycling in constant-round private computations. In: Jayanti P (ed) Distributed computing. Lecture Notes in Computer Science 1693. Springer-Verlag, Berlin, Heidelberg, pp 138–149

  44. Michael C (1986) Phys Rev B 33:7861

    Article  Google Scholar 

  45. Ito N, Kikuchi M, Okabe Y (1993) Recycle of random sequences. Int J Mod Phys C 4(3):569–590

    Article  MathSciNet  Google Scholar 

  46. Onsager L (1944) Crystal statistics. I: A two-dimensional model with an order-disorder transition. Phys Rev 65:117

  47. Ferrenberg AM, Landau DP (1991) Criticai hehavior of the three-dimensional Ising model: a high-resolution Monte Carlo study. Phys Rev B 44:5081

    Article  Google Scholar 

  48. Beale PD (1986) Finite-size scaling study of the two-dimensional Blume-Capel model. Phys Rev B 33:1717

    Article  Google Scholar 

  49. Xavier JC, Alcaraz FC, Pena Lara D, Plascak JA (1998) Critical behavior of the spin\({-\frac{3}{2}}\) Blume-Capel model in two dimensions. Phys Rev B 57:11575

  50. DaSilva CJ, Caparica AA, Plascak JA (2006) Wang-Landau Monte Carlo simulation of the Blume-Capel model. Phys Rev E 73:036702

    Article  Google Scholar 

  51. Komura Y (2015) Multi-GPU-based Swendsen-Wang multi-cluster algorithm with reduced data traffic. Comput Phys Commun 195:84–94

    Article  Google Scholar 

  52. Komura Y, Okabe Y (2016) Improved CUDA programs for GPU computing of Swendsen-Wang multi-cluster spin flip algorithm: 2D and 3D Ising, Potts, and XY models. Comput Phys Commun 200:400–401

    Article  Google Scholar 

  53. Li Q, Zhong C, Li K, Zhang G, Lu X, Zhang Q, Zhao K, Chu X (2012) Implementation of a lattice Boltzmann method for large eddy simulation on multiple GPUs. In: 2012 IEEE 14th international conference on high performance computing and communication, pp 818–823, https://doi.org/10.1109/HPCC.2012.115

Download references

Acknowledgements

The authors would like to acknowledge the support of the National Natural Science Foundation of China under Grant No. 11247015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wanjie Xiong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kong, Y., Huang, Z. & Xiong, W. Parallelism of the finite-time dynamics method based on GPU. Computing 104, 1721–1738 (2022). https://doi.org/10.1007/s00607-022-01065-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00607-022-01065-6

Keywords

Mathematics Subject Classification

Navigation