Skip to main content
Log in

Network structure optimization for social networks by minimizing the average path length

  • Regular Paper
  • Published:
Computing Aims and scope Submit manuscript

Abstract

Network structure plays an important role in the natural and social sciences. Optimization of network structure in achieving specified goals has been a major research focus. In this paper, we focus on structural optimization in terms of minimizing the network’s average path length (APL) by adding edges. We suggest a memetic algorithm to find the minimum-APL solution by adding edges. Experiments show that the proposed algorithm can solve this problem efficiently. Further, we find that APL will ultimately decrease linearly in the process of adding edges, which is affected by the network diameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Girvan M, Newman MEJ (2002) Community structure in social and biological networks. Proc Natl Acad Sci 99(12):7821–7826. https://doi.org/10.1073/pnas.122653799

    Article  MathSciNet  MATH  Google Scholar 

  2. Karrer B, Newman MEJ (2011) Stochastic blockmodels and community structure in networks. Phys Rev E Stat Nonlinear Soft Matter Phys 83:016107. https://doi.org/10.1103/PhysRevE.83.016107

  3. Gao C, Ma Z, Zhang AY, Zhou HH (2018) Community detection in degree-corrected block models. Ann Stat 46(5):2153–2185. https://doi.org/10.1214/17-AOS1615

    Article  MathSciNet  MATH  Google Scholar 

  4. Wang J, Zhang J, Liu B, Zhu J, Guo J (2021) Fast network community detection with profile-pseudo likelihood methods. J Am Stat Assoc 1–14. https://doi.org/10.1080/01621459.2021.1996378

  5. Watts DJ, Strogatz SH (1998) Collective dynamics of ‘small-world’ networks. Nature 393(6684):440–442. https://doi.org/10.1038/30918

  6. Barabási A-L, Albert R (1999) Emergence of scaling in random networks. Science 286(5439):509–512. https://doi.org/10.1126/science.286.5439.509

    Article  MathSciNet  MATH  Google Scholar 

  7. Albert R, Barabási A-L (2002) Statistical mechanics of complex networks. Rev Mod Phys 74(1):47–97. https://doi.org/10.1103/revmodphys.74.47

    Article  MathSciNet  MATH  Google Scholar 

  8. Wang W, Liu Q-H, Liang J, Hu Y, Zhou T (2019) Coevolution spreading in complex networks. Phys Rep 820:1–51

    Article  MathSciNet  Google Scholar 

  9. Li A, Zhou L, Su Q, Cornelius SP, Liu Y-Y, Wang L, Levin SA (2020) Evolution of cooperation on temporal networks. Nat Commun 11(1):2259. https://doi.org/10.1038/s41467-020-16088-w

    Article  Google Scholar 

  10. Wang Y, Zeng A, Di Z, Fan Y (2011) Enhancing synchronization in growing networks. EPL 96(5). https://doi.org/10.1209/0295-5075/96/58007

  11. Shi D, Chen G, Thong WWK, Yan X (2013) Searching for optimal network topology with best possible synchronizability. IEEE Circuits Syst Mag 13(1):66–75. https://doi.org/10.1109/mcas.2012.2237145

    Article  Google Scholar 

  12. Sun Y, Du H, Gong M, Ma L, Wang S (2014) Fast computing global structural balance in signed networks based on memetic algorithm. Physica A 415:261–272. https://doi.org/10.1016/j.physa.2014.07.071

    Article  MathSciNet  MATH  Google Scholar 

  13. Hwang SW, Kweon SJ, Ventura JA (2020) An alternative fuel refueling station location model considering detour traffic flows on a highway road system. J Adv Transp 2020. https://doi.org/10.1155/2020/9473831

  14. Davoodi M, Ghaffari M (2021) Shortest path problem on uncertain networks: an efficient two phases approach. Comput Indus Eng 157. https://doi.org/10.1016/j.cie.2021.107302

  15. Wang T, Cheng H, Wang X (2020) A link addition method based on uniformity of node degree in interdependent power grids and communication networks. Physica A 560:125112

    Article  Google Scholar 

  16. Kułakowski K, Gawroński P, Gronek P (2005) The heider balance: a continuous approach. Int J Mod Phys C 16(05):707–716. https://doi.org/10.1142/s012918310500742x

    Article  MATH  Google Scholar 

  17. Antal T, Krapivsky PL, Redner S (2005) Dynamics of social balance on networks. Phys Rev E Stat Nonlinear Soft Matter Phys 72(3 Pt 2):036121. https://doi.org/10.1103/PhysRevE.72.036121

    Article  MathSciNet  Google Scholar 

  18. Facchetti G, Iacono G, Altafini C (2011) Computing global structural balance in large-scale signed social networks. Proc Natl Acad Sci USA 108(52):20953–8. https://doi.org/10.1073/pnas.1109521108

    Article  Google Scholar 

  19. Yan X, Li C, Zhang L, Hu Y (2016) A new method optimizing the subgraph centrality of large networks. Physica A 444:373–387

    Article  MathSciNet  Google Scholar 

  20. Barahona F (1982) On the computational complexity of ising spin glass models. J Phys A Math Gen 15(10):3241–3253. https://doi.org/10.1088/0305-4470/15/10/028

    Article  MathSciNet  Google Scholar 

  21. Wang S, Gong M, Du H, Ma L, Miao Q, Du W (2016) Optimizing dynamical changes of structural balance in signed network based on memetic algorithm. Social Netw 44:64–73. https://doi.org/10.1016/j.socnet.2015.06.004

    Article  Google Scholar 

  22. Yang X, Xiaohua W (2007) Decentralized small-world optimization strategy. J Suzhou Univ 27(3):41–46. https://doi.org/10.3969/j.issn.1673-047X.2007.03.010

    Article  Google Scholar 

  23. Schleich J, Danoy G, Dorronsoro B, Bouvry P (2014) Optimising small-world properties in vanets: centralised and distributed overlay approaches. Appl Soft Comput 21:637–646. https://doi.org/10.1016/j.asoc.2014.03.045

    Article  Google Scholar 

  24. Du H, Fan J, He X, Feldman MW (2018) A genetic simulated annealing algorithm to optimize the small-world network generating process. Complexity 2018:1–12. https://doi.org/10.1155/2018/1453898

    Article  Google Scholar 

  25. Alstott J, Klymko C, Pyzza PB, Radcliffe M (2019) Local rewiring algorithms to increase clustering and grow a small world. J Compl Netw 7(4):564–584. https://doi.org/10.1093/comnet/cny032

    Article  MathSciNet  MATH  Google Scholar 

  26. Yu F, Li Y, Wu T-J (2010) A temporal ant colony optimization approach to the shortest path problem in dynamic scale-free networks. Physica A 389(3):629–636. https://doi.org/10.1016/j.physa.2009.10.005

    Article  Google Scholar 

  27. Ma H, Zeng AP (2003) Reconstruction of metabolic networks from genome data and analysis of their global structure for various organisms. Bioinformatics 19(2):270–277. https://doi.org/10.1093/bioinformatics/19.2.270

    Article  Google Scholar 

  28. Wang B, Tang H, Guo C, Xiu Z, Zhou T (2006) Optimization of network structure to random failures. Physica A 368(2):607–614. https://doi.org/10.1016/j.physa.2005.12.050

    Article  Google Scholar 

  29. Ashton DJ, Jarrett TC, Johnson NF (2005) Effect of congestion costs on shortest paths through complex networks. Phys Rev Lett 94(5):058701. https://doi.org/10.1103/PhysRevLett.94.058701

    Article  Google Scholar 

  30. Lago-Fernández LF, Huerta R, Corbacho F, Sigüenza JA (2000) Fast response and temporal coherent oscillations in small-world networks. Phys Rev Lett 84(12):2758–2761. https://doi.org/10.1103/physrevlett.84.2758

    Article  Google Scholar 

  31. Gade PM, Hu C-K (2000) Synchronous chaos in coupled map lattices with small-world interactions. Phys Rev E 62(5):6409–6413. https://doi.org/10.1103/physreve.62.6409

    Article  Google Scholar 

  32. Jost J, Joy MP (2001) Spectral properties and synchronization in coupled map lattices. Phys Rev E 65(1). https://doi.org/10.1103/physreve.65.016201

  33. Hong H, Choi MY, Kim BJ (2002) Synchronization on small-world networks. Phys Rev E Stat Nonlinear Soft Matter Phys 65(2 Pt 2):026139. https://doi.org/10.1103/PhysRevE.65.026139

    Article  Google Scholar 

  34. Barahona M, Pecora LM (2002) Synchronization in small-world systems. Phys Rev Lett 89(5). https://doi.org/10.1103/PhysRevLett.89.054101

  35. Donetti L, Hurtado PI, Munoz MA (2005) Entangled networks, synchronization, and optimal network topology. Phys Rev Lett 95(18):188701. https://doi.org/10.1103/PhysRevLett.95.188701

    Article  Google Scholar 

  36. Xuan Q, Li Y, Wu T-J (2009) Optimal symmetric networks in terms of minimizing average shortest path length and their sub-optimal growth model. Physica A 388(7):1257–1267. https://doi.org/10.1016/j.physa.2008.12.020

    Article  Google Scholar 

  37. Keren O (2008) Reduction of average path length in binary decision diagrams by spectral methods. IEEE Trans Comput 57(4):520–531. https://doi.org/10.1109/tc.2007.70811

    Article  MathSciNet  MATH  Google Scholar 

  38. Garijo D, Márquez A, Rodríguez N, Silveira RI (2019) Computing optimal shortcuts for networks. Eur J Oper Res 279(1):26–37. https://doi.org/10.1016/j.ejor.2019.05.018

    Article  MathSciNet  MATH  Google Scholar 

  39. Adamic LA, Adar E (2003) Friends and neighbors on the web. Social Netw 25(3):211–230. https://doi.org/10.1016/s0378-8733(03)00009-1

    Article  Google Scholar 

  40. Liben-Nowell D, Kleinberg J (2007) The link-prediction problem for social networks. J Am Soc Inform Sci Technol 58(7):1019–1031. https://doi.org/10.1002/asi.20591

    Article  Google Scholar 

  41. Meyerson A, Tagiku B (2009) Minimizing average shortest path distances via shortcut edge addition. Springer, pp 272–285. https://doi.org/10.1007/978-3-642-03685-9_21

  42. Parotsidis N, Pitoura E, Tsaparas P (2015) Selecting shortcuts for a smaller world. In: Proceedings of society for industrial and applied mathematics, pp 28–36. https://doi.org/10.1137/1.9781611974010.4

  43. Papagelis M, Bonchi F, Gionis A (2011) Suggesting ghost edges for a smaller world. Assoc Comput Mach. https://doi.org/10.1145/2063576.2063952

  44. Lazaridou K, Semertzidis K, Pitoura E, Tsaparas P (2015) Identifying converging pairs of nodes on a budget

  45. Lee SH, Holme P (2013) A greedy-navigator approach to navigable city plans. Eur Phys J Special Topics 215(1):135–144. https://doi.org/10.1140/epjst/e2013-01720-8

    Article  Google Scholar 

  46. Papagelis M (2015) Refining social graph connectivity via shortcut edge addition. ACM Trans Knowl Discov Data 10(2):1–35. https://doi.org/10.1145/2757281

    Article  Google Scholar 

  47. Gozzard A, Ward M, Datta A (2018) Converting a network into a small-world network: Fast algorithms for minimizing average path length through link addition. Inf Sci 422:282–289

    Article  MathSciNet  Google Scholar 

  48. Papagelis M (2015) Refining social graph connectivity via shortcut edge addition. ACM Trans Knowl Discov Data 10(2). https://doi.org/10.1145/2757281

  49. Brusco M, Steinley D (2011) A tabu-search heuristic for deterministic two-mode blockmodeling of binary network matrices. Psychometrika 76(4):612–33. https://doi.org/10.1007/s11336-011-9221-9

    Article  MathSciNet  MATH  Google Scholar 

  50. Ross BJ, Zuviria E (2006) Evolving dynamic bayesian networks with multi-objective genetic algorithms. Appl Intell 26(1):13–23. https://doi.org/10.1007/s10489-006-0002-6

    Article  Google Scholar 

  51. Norman MG, Moscato P et al (1991) A competitive and cooperative approach to complex combinatorial search. In: Proceedings of the 20th informatics and operations research meeting. Citeseer, pp 3–15

  52. Neri F, Cotta C (2012) Memetic algorithms and memetic computing optimization: a literature review. Swarm Evol Comput 2:1–14. https://doi.org/10.1016/j.swevo.2011.11.003

    Article  Google Scholar 

  53. Moscato P (1989) On evolution, search, optimization, genetic algorithms and martial arts-towards memetic algorithms. Caltech Concurrent Computation Program

  54. Du H, He X, Du W, Feldman MW (2017) Optimization of the critical diameter and average path length of social networks. Complexity 2017:1–11. https://doi.org/10.1155/2017/3203615

    Article  MathSciNet  MATH  Google Scholar 

  55. Du H, Wang J, He X, Du W (2019) A memetic algorithm to optimize critical diameter. Swarm Evol Comput 47:56–65. https://doi.org/10.1016/j.swevo.2017.10.001

    Article  Google Scholar 

  56. Niu J, Wang L (2016) Structural properties and generative model of non-giant connected components in social networks. Science China Inform Sci 59(12). https://doi.org/10.1007/s11432-015-0790-x

  57. Newman MEJ (2002) Assortative mixing in networks. Phys Rev Lett 89(20). https://doi.org/10.1103/physrevlett.89.208701

  58. Lusseau D, Schneider K, Boisseau OJ, Haase P, Slooten E, Dawson SM (2003) The bottlenose dolphin community of doubtful sound features a large proportion of long-lasting associations: can geographic isolation explain this unique trait? Behav Ecol Sociobiol 54(4):396–405

    Article  Google Scholar 

  59. Hayes B (2006) Connecting the dots. can the tools of graph theory and social-network studies unravel the next big plot? Am Sci 94(5):400–404

  60. Sundaresan SR, Fischhoff IR, Dushoff J, Rubenstein DI (2007) Network metrics reveal differences in social organization between two fission-fusion species. Grevy’s zebra and onager. Oecologia 151(1):140–149

Download references

Funding

This work is supported by National Natural Science Foundation of China(72104194), China Postdoctoral Science Foundation(2021M700107) and Fundamental Research Funds for the Central Universities(SK2021003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaochen He.

Ethics declarations

Conflict of interest

The authors declare that they have no confict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, W., Li, G. & He, X. Network structure optimization for social networks by minimizing the average path length. Computing 104, 1461–1480 (2022). https://doi.org/10.1007/s00607-022-01061-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00607-022-01061-w

Keywords

Mathematics Subject Classification

Navigation