Skip to main content

An ontology-based deep belief network model

Abstract

The end-to-end model has a wide range of applications in the fields of image recognition, natural language processing and speech recognition. The main benefit of this model is that the structure is a black box, and industrial users need only amend the inputs and outputs to obtain better performance for various applications. Nevertheless, in some contexts (e.g., medical-related tasks), the results of model generation require interpretability; furthermore, it is difficult to obtain the rich relationships of the hierarchical structure of the input, for the kind of data that are common in real life. In order to deal with these issues, this paper proposes an ontology-based deep belief network model to extend neural networks, using an approach that can be applied to hierarchical data. Multi-parameter data with hierarchical semantics are used in an experiment, and the results show that this model has the ability to handle hierarchical data and provide a certain level of interpretability.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    Najafabadi Maryam M, Flavio Villanustre, Khoshgoftaar Taghi M, Naeem S, Randall Wald, Edin Muharemagic (2015) Deep learning applications and challenges in big data analytics. J Big Data 2(1):1

    Article  Google Scholar 

  2. 2.

    Chunchun Chen Pu, Zhang Yuan Liu, Liu Jun (2020) Financial quantitative investment using convolutional neural network and deep learning technology. Neurocomputing 390:384–390

    Article  Google Scholar 

  3. 3.

    Esteva Andre, Robicquet Alexandre, Ramsundar Bharath, Kuleshov Volodymyr, DePristo Mark, Chou Katherine, Cui Claire, Corrado Greg, Thrun Sebastian, Dean Jeff (2019) A guide to deep learning in healthcare. Nature Med 25(1):24–29

    Article  Google Scholar 

  4. 4.

    Bottou Léon (2010) Large-scale machine learning with stochastic gradient descent. In Proceedings of COMPSTAT’2010, Springer, pages 177–186

  5. 5.

    Marcus Gary (2018) Deep learning: A critical appraisal arXiv preprint arXiv:1801.00631

  6. 6.

    Kumar Devinder, Wong Alexander, Taylor Graham W (2017) Explaining the unexplained: A class-enhanced attentive response (clear) approach to understanding deep neural networks. In:Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops

  7. 7.

    Alekseeva Ekaterina 2020 The opposition of symbolism and connectionism in the history of artificial intelligence development. ISTORIYA, 11(11 (97))

  8. 8.

    McDaniel Melinda, Storey Veda C (2019) Evaluating domain ontologies: clarification, classification, and challenges. ACM Comput Surv (CSUR) 52(4):1–44

    Article  Google Scholar 

  9. 9.

    Chérifa KA, Hassina A, Ahmed G (2021) Ontology learning: grand tour and challenges. Comput Sci Rev 39:100339

    MathSciNet  Article  Google Scholar 

  10. 10.

    Carvalho Rommel N, Laskey Kathryn B, Costa Paulo CG (2017) Pr-owl-a language for defining probabilistic ontologies. Int J Approxim Reason 91:56–79

    MathSciNet  Article  Google Scholar 

  11. 11.

    Kulmanov M, Smaili FZ, Gao X, Hoehndorf R (2020) Semantic similarity and machine learning with ontologies. Briefings Bioinforms 22(4):bbaa199. https://doi.org/10.1093/bib/bbaa199

    Article  Google Scholar 

  12. 12.

    Savitha Ramasamy, Ambikapathi ArulMurugan, Rajaraman Kanagasabai (2020) Online rbm: growing restricted boltzmann machine on the fly for unsupervised representation. Appl Soft Comput 92:106278

    Article  Google Scholar 

  13. 13.

    Yokoyama Yuuki, Katsumata Tomu, Yasuda Muneki (2019) Restricted boltzmann machine with multivalued hidden variables. Rev Socionetw Strat 13(2):253–266

    Article  Google Scholar 

  14. 14.

    Walter Sebastian, Unger Christina, Cimiano Philipp (2015) Dblexipedia: A nucleus for a multilingual lexical semantic web. In Proceedings of 3th International Workshop on NLP and DBpedia, co-located with the 14th International Semantic Web Conference (ISWC 2015), October 11–15, USA

  15. 15.

    Yanqing Ji, Hao Ying, John Tran, Peter Dews, Michael Massanari R (2016) Integrating unified medical language system and association mining techniques into relevance feedback for biomedical literature search. BMC Bioinform 17(9):25–36

    Google Scholar 

  16. 16.

    Gene Ontology Consortium (2015) Gene ontology consortium: going forward. Nucleic Acids Res 43(D1):1049–1056

    Article  Google Scholar 

  17. 17.

    Musen Mark A, Noy Natalya F, Shah Nigam H, Whetzel Patricia L, Chute Christopher G (2012) Margaret-Anne Story, Barry Smith, and NCBO team. The national center for biomedical ontology. J Am Med Inform Assoc 19(2):190–195

    Article  Google Scholar 

  18. 18.

    Mikolov Tomáš, Kombrink Stefan, Burget Lukáš, Černockỳ Jan, Khudanpur Sanjeev (2011) Extensions of recurrent neural network language model. In: 2011 IEEE international conference on acoustics, speech and signal processing (ICASSP), pages 5528–5531. IEEE

  19. 19.

    Srivastava Nitish, Salakhutdinov Ruslan, et al. (2012) Multimodal learning with deep boltzmann machines. In NIPS, volume 1, page 2. Citeseer

  20. 20.

    Alex Krizhevsky, Ilya Sutskever, Hinton Geoffrey E (2012) Imagenet classification with deep convolutional neural networks. Adv Neural Inf process Syst 25:1097–1105

    Google Scholar 

  21. 21.

    Zhang Nan, Ding Shifei, Sun Tongfeng, Liao Hongmei, Wang Lijuan, Shi Zhongzhi (2020) Multi-view rbm with posterior consistency and domain adaptation. Inf Sci 516:142–157

    Article  Google Scholar 

  22. 22.

    Hinton Geoffrey E (2002) Training products of experts by minimizing contrastive divergence. Neural Comput 14(8):1771–1800

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Xiulei Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Chen, R., Tong, Q. et al. An ontology-based deep belief network model. Computing (2021). https://doi.org/10.1007/s00607-021-01021-w

Download citation

Keywords

  • Ontology
  • Deep belief network
  • Hierarchical data
  • Interpretation

Mathematics Subject Classification

  • 68T30