Skip to main content

Advertisement

Log in

Performance modeling of the IEEE 802.15.4e TSCH enabling both shared and dedicated links in industrial WSNs

  • Regular Paper
  • Published:
Computing Aims and scope Submit manuscript

Abstract

Time Slotted Channel Hopping (TSCH) is one of the Medium Access Control methods proposed in the IEEE 802.15.4e standard to deal with the requirements of the industrial Wireless Sensor Networks (WSNs), especially in terms of high reliability and low latency. The key feature of the TSCH method is the combination between a time slotted access with a channel hopping, while considering both shared and dedicated links. The latter are essential for ensuring transmissions without loss and additional delays. Therefore, the objective we are seeking to reach in this paper is to demonstrate the benefit use of dedicated links on industrial WSNs-based 802.15.4e TSCH method. To this end, we propose an analytical model-based Markov chains for the TSCH method taking into account the dedicated links, and we estimate the transmission probability \(\tau \) of a data packet. The latter will be then used to develop others analytical models, in order to derive a number of performance metrics, namely the average access delay, the reliability, the throughput, and the energy consumption. Furthermore, to validate the analytical model, we perform extensive simulations-based Monte-Carlo. Finally, to give credibility to the obtained simulation results, we compute \(95\%\) confidence intervals. Numerical results show that increasing the number of dedicated links reduces significantly the retransmission probability offering best network performances in terms of average access delay, reliability and throughput.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

References

  1. Wu J, Guo S, Li J, Zeng D (2016) Big data meet green challenges: greening big data. IEEE Syst J 10(3):873

    Article  Google Scholar 

  2. Miorandi D, Uhlemann E, Vitturi S, Willig A (2007) Guest Editorial: Special section on wireless technologies in factory and industrial automation. IEEE Trans Ind Inform 3(2):95

    Article  Google Scholar 

  3. Platt G, Blyde M, Curtin S, Ward J (2005) Distributed wireless sensor networks and industrial control systems-a new partnership. In: The second IEEE workshop on embedded networked sensors, EmNetS-II. IEEE, pp 157–158. https://doi.org/10.1109/EMNETS.2005.1469112

  4. Sikandar A, Kumar S (2014) Performance analysis of interference aware power control scheme for TDMA in wireless sensor networks. In: Kumar K, Malay, Mohapatra, Durga P, Konar, Amit, Chakraborty, Aruna (eds) Advanced computing, networking and informatics, vol 2. Springer, pp 95–101

  5. Accettura N, Piro G (2014) Optimal and secure protocols in the IETF 6TiSCH communication stack. In: IEEE 23rd international symposium on industrial electronics (ISIE). IEEE, pp 1469–1474. https://doi.org/10.1109/ISIE.2014.6864831

  6. Kurunathan H, Severino R, Koubaa A, Tovar E (2018) IEEE 802.15.4e in a Nutshell: Survey and Performance Evaluation. IEEE Commun Surv Tutor 20(3):1989–2010. https://doi.org/10.1109/COMST.2018.2800898

  7. IEEE Standard for Local and metropolitan area networks–Part 15.4: Low-Rate Wireless Personal Area Networks (LR-WPANs) Amendment 1: MAC sublayer. IEEE, pp 1–225 (2012)

  8. Guglielmo DD, Nahas BA, Duquennoy S, Voigt T, Anastasi G (2017) Analysis and experimental evaluation of IEEE 802.15.4e TSCH CSMA-CA algorithm. IEEE Trans Veh Technol 66(2):1573. https://doi.org/10.1109/TVT.2016.2553176

    Article  Google Scholar 

  9. Dariz L, Ruggeri M, Malaguti G (2013) A proposal for enhancement towards bidirectional quasi-deterministic communications using IEEE 802.15.4. In: 21st Telecommunications Forum Telfor (TELFOR), pp 353–356. https://doi.org/10.1109/TELFOR.2013.6716242

  10. Berger A, Pichler M, Haselmayr W, Springer A (2014) Energy-efficient and reliable wireless sensor networks: an extension to IEEE 802.15.4e. EURASIP J Wirel Commun Netw 1:126. https://doi.org/10.1186/1687-1499-2014-126

    Article  Google Scholar 

  11. Anwar M, Xia Y (2014) IEEE 802.15.4e LLDN: superframe configuration for networked control systems. In: Proceedings of the 33rd Chinese control conference, pp 5568–5573. https://doi.org/10.1109/ChiCC.2014.6895891

  12. Ouanteur C, Aïssani D, Bouallouche-Medjkoune L, Yazid M, Castel-Taleb H (2017) Modeling and performance evaluation of the IEEE 802.15.4e LLDN mechanism designed for industrial applications in WSNs. Wirel Netw 23(5):1343. https://doi.org/10.1007/s11276-016-1226-y

    Article  Google Scholar 

  13. Sahoo PK, Pattanaik SR, Wu SL (2017) Design and analysis of a low latency deterministic network MAC for wireless sensor networks. Sensors 17(10):2185. https://doi.org/10.3390/s17102185

    Article  Google Scholar 

  14. Willig A, Matusovsky Y, Kind A (2017) Relayer-enabled retransmission scheduling in 802.15.4e LLDN—exploring a reinforcement learning approach. J Sens Actuator Netw 6(2):6. https://doi.org/10.3390/jsan6020006

    Article  Google Scholar 

  15. Jeong WC, Lee J (2012) Performance evaluation of IEEE 802.15.4e DSME MAC protocol for wireless sensor networks. In: First IEEE workshop on enabling technologies for smartphone and internet of things (ETSIoT). IEEE, pp 7–12. https://doi.org/10.1109/ETSIoT.2012.6311258

  16. Lee J, Jeong WC (2012) Performance analysis of IEEE 802.15.4e DSME MAC protocol under WLAN interference. In: International conference on ICT convergence (ICTC), pp 741–746. https://doi.org/10.1109/ICTC.2012.6387133

  17. Capone S, Brama R, Ricciato F, Boggia G, Malvasi A (2014) Modeling and simulation of energy efficient enhancements for IEEE 802.15.4e DSME. In: Wireless telecommunications symposium (WTS). IEEE, pp 1–6. https://doi.org/10.1109/WTS.2014.6835017

  18. Lee YS, Chung SH (2016) An efficient distributed scheduling algorithm for mobility support in IEEE 802.15.4e DSME-based industrial wireless sensor networks. Int J Distrib Sens Netw 12(2):9837625. https://doi.org/10.1155/2016/9837625

    Article  Google Scholar 

  19. Vallati C, Brienza S, Palmieri M, Anastasi G (2017) Improving network formation in IEEE 802.15.4e DSME. Comput Commun 114:1. https://doi.org/10.1016/j.comcom.2017.09.016

    Article  Google Scholar 

  20. Palattella MR, Accettura N, Dohler M, Grieco LA, Boggia G (2012) Traffic aware scheduling algorithm for reliable low-power multi-hop IEEE 802.15.4e networks. In: IEEE 23rd international symposium on personal, indoor and mobile radio communications (PIMRC), pp 327–332. https://doi.org/10.1109/PIMRC.2012.6362805

  21. Accettura N, Vogli E, Palattella MR, Grieco LA, Boggia G, Dohler M (2015) Decentralized traffic aware scheduling in 6TiSCH networks: design and experimental evaluation. IEEE Internet Things J 2(6):455. https://doi.org/10.1109/JIOT.2015.2476915

    Article  Google Scholar 

  22. Duy TP, Dinh T, Kim Y (2017) Distributed cell selection for scheduling function in 6TiSCH networks. Comput Stand Interfaces 53:80. https://doi.org/10.1016/j.csi.2017.03.008

    Article  Google Scholar 

  23. Guglielmo DD, Seghetti A, Anastasi G, Conti M (2014) A performance analysis of the network formation process in IEEE 802.15.4e TSCH wireless sensor/actuator networks. In: IEEE symposium on computers and communications (ISCC), pp 1–6. https://doi.org/10.1109/ISCC.2014.6912607

  24. Vogli E, Ribezzo G, Grieco LA, Boggia G (2015) Fast join and synchronization schema in the IEEE 802.15.4e MAC. In: IEEE wireless communications and networking conference workshops (WCNCW). IEEE, pp 85–90

  25. Du P, Roussos G (2012) Adaptive time slotted channel hopping for wireless sensor networks. In: 4th Computer science and electronic engineering conference (CEEC). IEEE, pp 29–34. https://doi.org/10.1109/CEEC.2012.6375374

  26. De Guglielmo D, Anastasi G, Seghetti A (2014) Advances onto the internet of things. Springer, Berlin, pp 135–152

    Book  Google Scholar 

  27. Alves RCA, Margi CB (2016) IEEE 802.15.4e TSCH mode performance analysis. In: IEEE 13th international conference on mobile ad hoc and sensor systems (MASS), pp 361–362. https://doi.org/10.1109/MASS.2016.054

  28. Vilajosana X, Wang Q, Chraim F, Watteyne T, Chang T, Pister K (2014) A realistic energy consumption model for TSCH networks. IEEE Sens J 14(2):482. https://doi.org/10.1109/JSEN.2013.2285411

    Article  Google Scholar 

  29. Al-Nidawi Y, Kemp AH (2015) Mobility aware framework for timeslotted channel hopping IEEE 802.15.4e sensor networks. IEEE Sens J 15(12):7112. https://doi.org/10.1109/JSEN.2015.2472276

    Article  Google Scholar 

  30. Sciancalepore S, Vučinić M, Piro G, Boggia G, Watteyne T (2017) Link-layer security in TSCH networks: effect on slot duration. Trans Emerg Telecommun Technol 28(1):e3089. https://doi.org/10.1002/ett.3089

    Article  Google Scholar 

  31. Ouanteur C, Bouallouche-Medjkoune L, Aïssani D (2017) An enhanced analytical model and performance evaluation of the IEEE 802.15.4e TSCH CA. Wirel Pers Commun 96(1):1355. https://doi.org/10.1007/s11277-017-4241-0

    Article  Google Scholar 

  32. Chen S, Sun T, Yuan J, Geng X, Li C, Ullah S, Abdullah Alnuem M (2013) Performance analysis of IEEE 802.15.4e time slotted channel hopping for low-rate wireless networks. KSII Trans Internet Inf Syst 7(1):1. https://doi.org/10.3837/tiis.2013.01.001

    Article  Google Scholar 

  33. Guglielmo D, Nahas BA, Duquennoy S, Voigt T, Anastasi G (2017) Analysis and experimental evaluation of IEEE 802.15.4e TSCH CSMA-CA algorithm. IEEE Trans Veh Technol 66(2):1573. https://doi.org/10.1109/TVT.2016.2553176

    Article  Google Scholar 

  34. Martin KM, Seetha Ramanjaneyulu B (2020) Priority Based Centralized Scheduling for Time Slotted Channel Hopping Based Multihop IEEE 802. 15. 4 Networks. J Comput Theor Nanosci 17(1):363–372

    Article  Google Scholar 

  35. Mohamadi M, Djamaa B, Senouci MR, Mellouk A (2021) FAN: fast and active network formation in IEEE 802.15.4 TSCH networks. J Netw Comput Appl 183—-184:103026. https://doi.org/10.1016/j.jnca.2021.103026

    Article  Google Scholar 

  36. Hammoudi S, Harous S, Aliouat Z, Louail L (2018) Time slotted channel hopping with collision avoidance. Int J Ad Hoc Ubiquitous Comput 29(1–2):85–102

  37. De Guglielmo D, Anastasi G, Seghetti A (2014) Advances onto the internet of things. Springer, Berlin, pp 135–152. https://doi.org/10.1007/978-3-319-03992-3

    Book  Google Scholar 

  38. Cena G, Demartini CG, Ghazi Vakili M, Scanzio S, Valenzano A, Zunino C (2020) Evaluating and modeling IEEE 802.15.4 TSCH resilience against Wi-Fi interference in new-generation highly-dependable wireless sensor networks. Ad Hoc Netw 106:102199. https://doi.org/10.1016/j.adhoc.2020.102199

    Article  Google Scholar 

  39. Touloum S, Bouallouche-Medjkoune L, Aïssani D, Ouanteur C (2020) Performance analysis of the IEEE 802.15.4e TSCH-CA algorithm under a non-ideal channel. IJWMC 18(1):1. https://doi.org/10.1504/IJWMC.2020.104765

    Article  Google Scholar 

  40. Gardiner C (2009) Stochastic methods, vol 4. Springer, Berlin

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soraya Touloum.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Touloum, S., Bouallouche-Medjkoune, L., Yazid, M. et al. Performance modeling of the IEEE 802.15.4e TSCH enabling both shared and dedicated links in industrial WSNs. Computing 104, 859–891 (2022). https://doi.org/10.1007/s00607-021-00990-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00607-021-00990-2

Keywords

Mathematics Subject Classification

Navigation