Efficient federated learning for fault diagnosis in industrial cloud-edge computing


Federated learning is a deep learning optimization method that can solve user privacy leakage, and it has positive significance in applying industrial equipment fault diagnosis. However, edge nodes in industrial scenarios are resource-constrained, and it is challenging to meet the computational and communication resource consumption during federated training. The heterogeneity and autonomy of edge nodes will also reduce the efficiency of synchronization optimization. This paper proposes an efficient asynchronous federated learning method to solve this problem. This method allows edge nodes to select part of the model from the cloud for asynchronous updates based on local data distribution, thereby reducing the amount of calculation and communication and improving the efficiency of federated learning. Compared with the original federated learning, this method can reduce the resource requirements at the edge, reduce communication, and improve the training speed in heterogeneous edge environments. This paper uses a heterogeneous edge computing environment composed of multiple computing platforms to verify the effectiveness of the proposed method.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. 1.

    Sisinni E, Saifullah A, Han S (2018) Industrial internet of things : challenges. Opport Direct 14(11):4724–4734

    Google Scholar 

  2. 2.

    Shi W, Cao J, Zhang Q, Li Y, Xu L (2016) Edge computing: vision and challenges. IEEE Internet Things J 3(5):637–646. https://doi.org/10.1109/JIOT.2016.2579198

    Article  Google Scholar 

  3. 3.

    McMahan HB, Moore E, Ramage D, y Arcas BA (2016) Federated learning of deep networks using model averaging. arXiv:1602.05629

  4. 4.

    Brendan McMahan H, Moore E, Ramage D, Hampson S, Agüera y Arcas B (2017)Communication-efficient learning of deep networks from decentralized data. Proceedings of the 20th International Conference on Artificial Intelligence and Statistics, AISTATS 2017

  5. 5.

    Yang Q, Liu Y, Chen T, Tong Y (2019) Federated machine learning: concept and applications. ACM Trans Intel Syst Technol 10(2):1–19. https://doi.org/10.1145/3298981

    Article  Google Scholar 

  6. 6.

    GDPR. https://www.cogentco.com/en/cogent-gdpr

  7. 7.

    Pan X, Chen J, Monga R, Bengio S, Jozefowicz R (2017) Revisiting distributed synchronous SGD. pp 1–10 arXiv:1702.05800

  8. 8.

    Wang S, Tuor T, Salonidis T, Leung KK, Makaya C, He T, Chan K (2019) Adaptive federated learning in resource constrained edge computing systems. IEEE J Sel Areas Commun 37(6):1205–1221. https://doi.org/10.1109/JSAC.2019.2904348

    Article  Google Scholar 

  9. 9.

    Xie C, Koyejo S, Gupta I (2019) Asynchronous federated optimization. arXiv:1903.03934

  10. 10.

    Lu Y, Huang X, Dai Y, Maharjan S, Zhang Y (2020) Differentially private asynchronous federated learning for mobile edge computing in urban informatics. IEEE Trans Industr Inf 16(3):2134–2143. https://doi.org/10.1109/TII.2019.2942179

    Article  Google Scholar 

  11. 11.

    Chen Y, Sun X, Jin Y (2019) Communication-efficient federated deep learning with layerwise asynchronous model update and temporally weighted aggregation (Iid) 1–10

  12. 12.

    Deng S, Zhao H, Fang W, Yin J, Dustdar S, Zomaya AY (2020) Edge intelligence: the confluence of edge computing and artificial intelligence. IEEE Internet Things J 7(8):7457–7469. https://doi.org/10.1109/JIOT.2020.2984887

    Article  Google Scholar 

  13. 13.

    Wang X, Han Y, Wang C, Zhao Q, Chen X, Chen M (2019) In-edge ai: intelligentizing mobile edge computing, caching and communication by federated learning. IEEE Netw 33(5):156–165. https://doi.org/10.1109/MNET.2019.1800286

    Article  Google Scholar 

  14. 14.

    Smith V, Chiang CK, Sanjabi M, Talwalkar A (2017) Federated multi-task learning. Adv Neural Inform Process Syst 2017(Nips), 4425–4435. arXiv:1705.10467

  15. 15.

    McMahan JKHB, Yu FX, Richtárik P, Suresh AT, Bacon D (2017) Federated learning: Strategies for improving communication efficiency

  16. 16.

    Zhu H, Jin Y (2019) Multi-objective evolutionary federated learning. IEEE Trans Neural Netw Learn Syst. https://doi.org/10.1109/tnnls.2019.2919699

    Article  Google Scholar 

  17. 17.

    Roy D, Panda P, Roy K (2020) Tree-CNN: a hierarchical deep convolutional neural network for incremental learning. Neural Netw 121:148–160. https://doi.org/10.1016/j.neunet.2019.09.010

    Article  Google Scholar 

  18. 18.

    Teerapittayanon S, McDanel B, Kung HT (2016) BranchyNet: fast inference via early exiting from deep neural networks. Proc Int Conf Pattern Recogn. https://doi.org/10.1109/ICPR.2016.7900006

    Article  Google Scholar 

  19. 19.

    Wang Q, Wang K, Li Q, Yang Z, Jin G, Wang H (2020) MBNN: a multi-branch neural network capable of utilizing industrial sample unbalance for fast inference. IEEE Sens J 21(2):1. https://doi.org/10.1109/jsen.2020.3017686

    Article  Google Scholar 

  20. 20.

    Li X, Huang K, Yang W, Wang S, Zhang Z (2019) On the Convergence of FedAvg on Non-IID Data. arXiv:1907.02189

  21. 21.

    Bearing Data Center. https://csegroups.case.edu/bearingdatacenter/home

  22. 22.

    Zhao Y, Li M, Lai L, Suda N, Civin D, Chandra V (2018) Federated learning with non-IID data. arXiv:1806.00582

  23. 23.

    Cao P, Zhang S, Tang J (2018) Preprocessing-free gear fault diagnosis using small datasets with deep convolutional neural network-based transfer learning. IEEE Access 6:26241–26253. https://doi.org/10.1109/ACCESS.2018.2837621

    Article  Google Scholar 

  24. 24.

    Gear Fault Data. https://figshare.com/articles/Gear_Fault_Data/6127874/1

  25. 25.

    Wen L, Li X, Gao L, Zhang Y (2018) A new convolutional neural network-based data-driven fault diagnosis method. IEEE Trans Industr Electron 65(7):5990–5998. https://doi.org/10.1109/TIE.2017.2774777

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Qizhao Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Li, Q., Wang, K. et al. Efficient federated learning for fault diagnosis in industrial cloud-edge computing. Computing (2021). https://doi.org/10.1007/s00607-021-00970-6

Download citation


  • Federated learning
  • Industrial edge computing
  • Fault diagnosis
  • Asynchronous optimization