Handover authentication latency reduction using mobile edge computing and mobility patterns


With the advancement in technology and the exponential growth of mobile devices, network traffic has increased manifold in cellular networks. Due to this reason, latency reduction has become a challenging issue for mobile devices. In order to achieve seamless connectivity and minimal disruption during movement, latency reduction is crucial in the handover authentication process. Handover authentication is a process in which the legitimacy of a mobile node is checked when it crosses the boundary of an access network. This paper proposes an efficient technique that utilizes mobility patterns of the mobile node and mobile Edge computing framework to reduce handover authentication latency. The key idea of the proposed technique is to categorize mobile nodes on the basis of their mobility patterns. We perform simulations to measure the networking latency. Besides, we use queuing model to measure the processing time of an authentication query at an Edge servers. The results show that the proposed approach reduces the handover authentication latency up to 54% in comparison with the existing approach.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9


  1. 1.

    Tripathi ND, Reed JH, VanLandinoham HF (1998) Handoff in cellular systems. IEEE Pers Commun 5(6):26–37

    Article  Google Scholar 

  2. 2.

    Zeng Q-A, Agrawal DP (2002) Handoff in wireless mobile networks. In: Handbook of wireless networks and mobile computing, vol 28 pp 1–25

  3. 3.

    Vivek KEKM (2013) Efficient handover authentication scheme for mobile nodes in wireless networks. Int J Eng Res Technol 2:1–5

    Google Scholar 

  4. 4.

    He D, Chan S, Guizani M (2015) Handover authentication for mobile networks: security and efficiency aspects. IEEE Netw 29(3):96–103

    Article  Google Scholar 

  5. 5.

    Xie Y, Wu L, Kumar N, Shen J (2017) Analysis and improvement of a privacy-aware handover authentication scheme for wireless network. Wireless Pers Commun 93(2):523–541

    Article  Google Scholar 

  6. 6.

    Li G, Ma J, Jiang Q, Chen X (2011) A novel re-authentication scheme based on tickets in wireless local area networks. J Parallel Distrib Comput 71(7):906–914

    Article  Google Scholar 

  7. 7.

    Kim J, Song J (2014) A public key based pmipv6 authentication scheme. In: 2014 IEEE/ACIS 13th international conference on computer and information science (ICIS). IEEE, pp 5–10

  8. 8.

    Lee J-H, Han Y-J, Chung T-M (2007) Local authentication scheme based on AAA in mobile IPV6 networks. In: International conference on multimedia modeling. Springer, pp 552–559

  9. 9.

    Lee J-H, Bonnin J-M (2013) Hota: handover optimized ticket-based authentication in network-based mobility management. Inf Sci 230:64–77

    MathSciNet  Article  Google Scholar 

  10. 10.

    Xu L, He Y, Chen X, Huang X (2014) Ticket-based handoff authentication for wireless mesh networks. Comput Netw 73:185–194

    Article  Google Scholar 

  11. 11.

    Tripathi AK, Lather J, Radhakrishnan R (2017) Secure and optimized authentication scheme in proxy mobile IPV6 (SOAS-PMIPV6) to reduce handover latency. Int J Comput Netw Inf Secur 10(10):1

    Google Scholar 

  12. 12.

    Sun X, Ansari N (2016) Edgeiot: mobile edge computing for the internet of things. IEEE Commun Mag 54(12):22–29

    Article  Google Scholar 

  13. 13.

    Rimal BP, Van DP, Maier M (2017) Mobile edge computing empowered fiber-wireless access networks in the 5g era. IEEE Commun Mag 55(2):192–200

    Article  Google Scholar 

  14. 14.

    ETSI M (2014) Mobile edge computing-introductory technical white paper. etsi2014mobile, no. Issue

  15. 15.

    Puetzschler U (2016) Lte and car2x: connected cars on the way to 5g. Mobile Broadband SIG, 6

  16. 16.

    Hu YC, Patel M, Sabella D, Sprecher N, Young V (2015) Mobile edge computing-a key technology towards 5g. ETSI White Paper 11(11):1–16

    Google Scholar 

  17. 17.

    Sprecher N (2016) Mobile edge computing an enabler for enhanced car2x communication. ETSI white paper

  18. 18.

    Wang S, Zhang X, Zhang Y, Wang L, Yang J, Wang W (2017) A survey on mobile edge networks: convergence of computing, caching and communications. IEEE Access 5:6757–6779

    Article  Google Scholar 

  19. 19.

    Ahmed E, Rehmani MH (2017) Mobile edge computing: opportunities, solutions, and challenges

  20. 20.

    Allah BH, Abdellah I (2017) Mec towards 5g: a survey of concepts, use cases, location tradeoffs. Trans Mach Learn Artif Intell 5(4)

  21. 21.

    Wan M, Liu Y, Zhou H, Zhang H (2010) A chord-based handoff authentication scheme under id/locator separation architecture

  22. 22.

    Arif Ahmed EA (2016) A survey on mobile edge computing

  23. 23.

    Roman R, Lopez J, Mambo M (2018) Mobile edge computing, fog et al.: a survey and analysis of security threats and challenges. Fut Gener Comput Syst 78:680–698

    Article  Google Scholar 

  24. 24.

    Bittencourt LF, Diaz-Montes J, Buyya R, Rana OF, Parashar M (2017) Mobility-aware application scheduling in fog computing. IEEE Cloud Comput 4(2):26–35

    Article  Google Scholar 

  25. 25.

    Yi S, Hao Z, Zhang Q, Zhang Q, Shi W, Li Q (2017) Lavea: latency-aware video analytics on edge computing platform. In: Proceedings of the second ACM/IEEE symposium on edge computing. ACM, p 15

  26. 26.

    Taleb T, Dutta S, Ksentini A, Iqbal M, Flinck H (2017) Mobile edge computing potential in making cities smarter. IEEE Commun Mag 55(3):38–43

    Article  Google Scholar 

  27. 27.

    Li C-Y, Liu H-Y, Huang P-H, Chien H-T, Tu G-H, Hong P-Y, Lin Y-D (2018) Mobile edge computing platform deployment in 4g \(\{LTE\}\) networks: a middlebox approach,” In: \(\{USENIX\}\) workshop on hot topics in edge computing (HotEdge 18)

  28. 28.

    Chang Z, Zhou Z, Ristaniemi T, Niu Z (2017) Energy efficient optimization for computation offloading in fog computing system. In: GLOBECOM 2017–2017 IEEE global communications conference. IEEE, pp 1–6

  29. 29.

    Liu L, Chang Z, Guo X, Mao S, Ristaniemi T (2017) Multiobjective optimization for computation offloading in fog computing. IEEE Internet Things J 5(1):283–294

    Article  Google Scholar 

  30. 30.

    Deng S, Xiang Z, Taheri J, Mohammad KA, Yin J, Zomaya A, Dustdar S (2020) Optimal application deployment in resource constrained distributed edges. IEEE Trans Mob Comput 20:1907–1923

    Article  Google Scholar 

  31. 31.

    Zhao H, Deng S, Liu Z, Yin J, Dustdar S (2020) Distributed redundancy scheduling for microservice-based applications at the edge. IEEE Trans Serv Comput. https://doi.org/10.1109/TSC.2020.3013600

    Article  Google Scholar 

  32. 32.

    Deng S, Zhang C, Li C, Yin J, Dustdar S, Zomaya AY (2021) Burst load evacuation based on dispatching and scheduling in distributed edge networks. IEEE Trans Parallel Distrib Syst 32(8):1918–1932

    Article  Google Scholar 

  33. 33.

    Zhao H, Deng S, Liu Z, Xiang Z, Yin J, Dustdar S, Zomaya A (2021) Dpos: decentralized, privacy-preserving, and low-complexity online slicing for multi-tenant networks. IEEE Trans Mob Comput. https://doi.org/10.1109/TMC.2021.3074934

    Article  Google Scholar 

  34. 34.

    Dautov R, Distefano S (2020) Stream processing on clustered edge devices. IEEE Trans Cloud Comput. https://doi.org/10.1109/TCC.2020.2983402

    Article  Google Scholar 

  35. 35.

    Sajjad HP, Danniswara K, Al-Shishtawy A, Vlassov V (2016) Spanedge: towards unifying stream processing over central and near-the-edge data centers. In: 2016 IEEE/ACM symposium on edge computing (SEC). IEEE, pp 168–178

  36. 36.

    Amarasinghe G, de Assunçao MD, Harwood A, Karunasekera S (2018) A data stream processing optimisation framework for edge computing applications. In: 2018 IEEE 21st international symposium on real-time distributed computing (ISORC). IEEE, pp 91–98

  37. 37.

    Lin Y-B, Chang M-F, Huang-Fu C-C (2011) Derivation of cell residence times from the counters of mobile telecommunications switches. IEEE Trans Wirel Commun 10(12):4048–4051

    Article  Google Scholar 

  38. 38.

    Munir K, Zahoor E, Shahzad W, Hussain SJ (2016) Intelligent reduction in signaling load of location management in mobile data networks. Int J Comput Netw Inf Secur (IJCNIS) 8(11):23–31

    Google Scholar 

  39. 39.

    Prabhu NU (2012) Foundations of queueing theory, vol 7. Springer, Berlin

    MATH  Google Scholar 

  40. 40.

    contributors W (2020) Anaconda (Python distribution). Accessed 31 July 2020

  41. 41.

    Simon D, Aboba B, Hurst R et al (2008) The eap-tls authentication protocol. RFC5216, IETF, March, 1

  42. 42.

    Cam-Winget N, McGrew D, Zhou H, Salowey J (2007) The flexible authentication via secure tunneling extensible authentication protocol method (eap-fast)

  43. 43.

    Funk P, Blake-Wilson S (2008) Extensible authentication protocol tunneled transport layer security authenticated protocol version 0 (eap-ttlsv0)

  44. 44.

    AH JS, Securit ZG, AB (2001) Protected extensible authentication protocol (peap)

  45. 45.

    Lee J-H, Lee J-H, Chung T-M (2008) Ticket-based authentication mechanism for proxy mobile ipv6 environment. In: 2008 Third international conference on systems and networks communications. IEEE, pp 304–309

  46. 46.

    Clancy T, Nakhjiri M, Narayanan V, Dondeti L (2008) Handover key management and re-authentication problem statement. Technical report

Download references


This work received support from the DataCloud project funded by the European Union under the Horizon 2020 Programme (Grant Number 101016835), Kärntner Fog 5G Playground project funded by Carinthian Agency for Investment Promotion and Public Shareholding, and Ernst Mach-Nachbetreuungsstipendium (Reference Number ICM-2017-08089) by the Austrian Agency for International Cooperation in Education & Research (OeAD-GmbH).

Author information



Corresponding author

Correspondence to Kashif Munir.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Abdullah, F., Kimovski, D., Prodan, R. et al. Handover authentication latency reduction using mobile edge computing and mobility patterns. Computing (2021). https://doi.org/10.1007/s00607-021-00969-z

Download citation


  • Mobile edge computing
  • Handover authentication
  • Mobility patterns

Mathematics Subject Classification

  • 68M20