CMCSF: a collaborative service framework for mobile web augmented reality base on mobile edge computing

Abstract

Mobile web-based augmented reality (MWAR) provides users with quick richer information interaction forms due to its convenience and universality. However, the 3D model data service for MWAR is a type of centralized file-based data service, which cannot simultaneously meet diverse user and response delay requirements in large-scale and complex applications. This affects the application and promotion of large-scale and complex MWAR application. To this end, this paper proposes a collaborative model data computing service framework (CMCSF) for MWAR between Mobile Edge Servers (MES), Cloud Servers (CS), and mobile devices. The main contributions of this paper include: (1) The CMCSF converts the file-based 3D model data service in MWAR to a computing-based and interfaced data service to meet the diverse service requirements of users; (2) The CMCSF establishes a collaborative computing model data service between the MES and the CS, and it computes a control and deployment strategy for the collaborative computing model data service in order to reduce the response delay of 3D model data; and (3) The CMCSF optimizes the loading method of the WebGL engine (for example, three.js) and applies the asynchronous loading method of the JSON interface data on the http protocol for browsers to get persistent model data services. An experimental evaluation shows the CMCSF improves the response efficiency of the 3D model data file Significantly when compared with the original centralized file-based 3D model file service.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    Alhaija A, Mustikovela H, Karthik S, Lars M, Andreas G (2018) Augmented reality meets computer vision: Efficient data generation for urban driving scenes. Int J Comput Vis 126:961

    Article  Google Scholar 

  2. 2.

    Qiao X, Ren P, Nan G, Liu L, Dustdar S, Chen J (2019) Mobile web augmented reality in 5g and beyond:challenges, opportunities, and future directions. China Commun

  3. 3.

    Inmaculada CT, Sergio CY, Pablo CS, Marcos FM (2018) Casas Yrurzum Sergio, Fi-ar learning: a web-based platform for augmented reality educational content. Multimedia Tools Appl 78:6093–6118

    Google Scholar 

  4. 4.

    Nguyen M, Lai MP, Le H, Yan WQ (2019) A web-based augmented reality plat-form using pictorial qr code for educational purposes and beyond. In: 25th ACM symposium on virtual reality software and technology

  5. 5.

    Tran TX, Hajisami A, Pandey P, Pompili D (2017) Collaborative mobile edge computing in 5g networks: new paradigms, scenarios, and challenges. IEEE Commun Mag 55(4):54–61

    Article  Google Scholar 

  6. 6.

    Rahimi MR, Jian R, Chi HL, Vasilakos AV, Venkatasubramanian N (2014) Mobile cloud computing: a survey, state of art and future directions. Mob Netw Appl 19(2):133–143

    Article  Google Scholar 

  7. 7.

    Huang Y, Qiao X, Ren P, Liu L, Chen J (2020) A lightweight collaborative deep neural network for the mobile web in edge cloud. IEEE Trans Mob Comput 99:1

    Google Scholar 

  8. 8.

    Kumar K, Lu YH (2010) Cloud computing for mobile users: can offloading computation save energy? Computer 43(4):51–56

    Article  Google Scholar 

  9. 9.

    Barbera Marco V, Kosta S, Mei A, Stefa J (2013) To offload or not to offload? the bandwidth and energy costs of mobile cloud computing. In: INFOCOM, 2013 Proceedings IEEE

  10. 10.

    Aldmour R, Yousef S, Yaghi M, Tapaswi S, Pattanaik KK, Cole M (2017) New cloud offloading algorithm for better energy consumption and process time. Int J Syst Assur Eng Manag

  11. 11.

    Boukerche A, Pazzi R, Werner N (2006) Remote rendering and streaming of progressive panoramas for mobile devices. In: Proceedings of the 14th ACM International Conference on Multimedia, Santa Barbara, CA, USA, October 23–27, 2006

  12. 12.

    Maamar HR, Boukerche A, Petriu E (2010) Mosaic-a mobile peer-to-peer networks-based 3d streaming supplying partner protocol. In: 2010 IEEE/ACM 14th international symposium on distributed simulation and real time applications, pp 61–68. IEEE

  13. 13.

    Diepstraten J, Görke M, Ertl T (2012) Remote line rendering for mobile devices

  14. 14.

    Satyanarayanan M, Bahl P, Caceres R, Davies N (2009) The case for vm-based cloudlets in mobile computing. IEEE Perv Comput 8(4):14–23

    Article  Google Scholar 

  15. 15.

    Patel M, Naughton B, Chan C, Sprecher N, Abeta S, Neal A et al (2014) Mobile-edge computing introductory technical white paper. White paper, mobile-edge computing (MEC) industry initiative, pp 1089–7801

  16. 16.

    Liang T, Yong L Wei G (2016) A hierarchical edge cloud architecture for mobile computing. In IEEE INFOCOM 2016—IEEE Conference on Computer Communications

  17. 17.

    Li X, Wang X, Li K, Zhu H, Leung VCM (2017) Collaborative multi-tier caching in heterogeneous networks: Modeling, analysis, and design. IEEE Trans Wireless Commun 99:1

    Google Scholar 

  18. 18.

    Min C, Hao Yixue H, Long HK, Vincent L (2017) Green and mobility-aware caching in 5g networks. IEEE Trans Wireless Commun 16:1

    Article  Google Scholar 

  19. 19.

    Shi W, Jie C (2016) Edge computing: vision and challenges. IEEE Int Things J 3(5):637–646

    Article  Google Scholar 

  20. 20.

    Chen M, Yixue H, Meikang Q, Jeungeun S, Di W, Iztok H (2016) Mobility-aware caching and computation offloading in 5g ultra-dense cellular networks. Sensors 16(7):974

    Article  Google Scholar 

  21. 21.

    Masip-Bruin X, Marín-Tordera E, Tashakor G, Jukan A, Ren G-J (2016) Foggy clouds and cloudy fogs: a real need for coordinated management of fog-to-cloud computing systems. IEEE Wireless Commun 23(5):120–128

    Article  Google Scholar 

  22. 22.

    Verbelen T, Simoens P, De Turck F, Dhoedt B (2013) Leveraging cloudlets for immersive collaborative applications. IEEE Perv Comput 12(4):30–38

    Article  Google Scholar 

  23. 23.

    Al-Shuwaili A, Simeone O, Bagheri A, Gesualdo S (2016) Joint uplink/downlink optimization for backhaul-limited mobile cloud computing with user scheduling. IEEE Trans Sign Inform Process Over Netw 3:1467

    MathSciNet  Google Scholar 

  24. 24.

    Sardellitti S, Scutari G, Barbarossa S (2015) Joint optimization of radio and computational resources for multicell mobile-edge computing. IEEE Trans Sign Inform Process Over Netw 1(2):89–103

    MathSciNet  Article  Google Scholar 

  25. 25.

    Bohez S, Turck Joeri De, Verbelen T, Simoens P, Dhoedt B (2013) Mobile, collaborative augmented reality using cloudlets. In 2013 International conference on MOBILe Wireless MiddleWARE, operating systems, and applications, IEEE, pp 45–54

  26. 26.

    Kumar A, Mantri A, Dutta R (2020) Development of an augmented reality-based scaffold to improve the learning experience of engineering students in embedded system course. Comput Appl Eng Educ 3:1–14

    Google Scholar 

  27. 27.

    Huang Y, Qiao X, Tang J, Ren P, Chen J (2020) Deepadapter: a collaborative deep learning framework for the mobile web using context-aware network pruning. In IEEE INFOCOM 2020—IEEE conference on computer communications

  28. 28.

    Ren P, Qiao X, Huang Y, Liu L, Dustdar S, Chen J (2020) Edge-assisted distributed dnn collaborative computing approach for mobile web augmented reality in 5g networks. IEEE Netw 34(2):254–261

    Article  Google Scholar 

  29. 29.

    Niroshinie F, Seng W, Loke W, (2013) Mobile cloud computing: a survey. Fut Gener Comput Syst

  30. 30.

    Ahmed E, Ahmed A, Yaqoob I, Shuja J, Gani A, Imran M, Shoaib M (2017) Bringing computation closer toward the user network: Is edge computing the solution? IEEE Commun Mag 55(11):138–144

    Article  Google Scholar 

  31. 31.

    Shannon EC (2001) A mathematical theory of communication. Bell Syst Techn J 27(4):623–656

    MathSciNet  Article  Google Scholar 

  32. 32.

    Ren J, Guanding Yu, He Y, Li GY (2019) Collaborative cloud and edge computing for latency minimization. IEEE Trans Vehicular Technol 68(5):5031–5044

    Article  Google Scholar 

  33. 33.

    Ying He F, Yu R, Zhao N, Leung VCM, Yin H (2017) Software-defined networks with mobile edge computing and caching for smart cities: A big data deep reinforcement learning approach. IEEE Commun Mag 55(12):31–37

    Article  Google Scholar 

  34. 34.

    Yoo SK, Lee KS, Bae SH, Kim N H (2004) Polygon reduction algorithm for three-dimensional surface visualization. Transactions- Korean Institute of Electrical Engineers

Download references

Acknowledgements

This work is supported by the Basic Public Welfare Projects in Zhejiang Province, China, under Grant LGG19F020002; Key Lab of Film and TV Media Technology of Zhejiang Province, No.2020E10015.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Liang Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, L., Lu, Q., Xu, Y. et al. CMCSF: a collaborative service framework for mobile web augmented reality base on mobile edge computing. Computing (2021). https://doi.org/10.1007/s00607-021-00952-8

Download citation

Keywords

  • Mobile web augmented reality
  • Mobile edge computing
  • Model data computing service
  • Collaborative computing

Mathematics Subject Classification

  • 94A99