Constraint aware profit maximization scheduling of tasks in heterogeneous datacenters

Abstract

The extensive use of cloud services in different domains triggers the efficient use of cloud resources to achieve maximum profit. The heterogeneous nature of data centers and the heterogeneous resource requirement of user applications create a scope of improvement in task scheduling. The resource requirements in terms of task constraints must be fulfilled for the tasks to be admitted to the system. Once a task admitted to the system, it may violate service level agreement and incurs penalty due to the disproportionate resource allocation at run time. The latency-sensitive and short-lived workloads need effective scheduling to gain more profit. In this work, we propose Heuristic of Ordering and Mapping for Constraint Aware Profit Maximization (HOM-CAPM) problem for efficient scheduling of tasks with constraints and deadlines to gain maximum profit. The HOM-CAPM approach considers estimation of task execution time in a heterogeneous environment, efficient task ordering, and profit-based task allocation to maximize the overall profit of the cloud system. To gain maximum profit the proposed heuristic considers two cases, (a) not allowing the tasks for execution if it expected to miss its deadline and (b) allowing the task which earns substantial profit even though it is expected to miss its deadline. The results of the extensive simulation using Google trace data as input show that our proposed HOM-CAPM approach generates more profit than other state-of-the-art approaches.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. 1.

    Li K, Mei J, Li K (2018) A fund-constrained investment scheme for profit maximization in cloud computing. IEEE Trans Serv Comput 11(6):893–907

    Google Scholar 

  2. 2.

    Nesmachnow S, Iturriaga S, Dorronsoro B (2015) Efficient heuristics for profit optimization of virtual cloud brokers. IEEE Comput Intell Mag 10(1):33–43

    Google Scholar 

  3. 3.

    Buyya R et al (2009) Cloud computing and emerging it platforms: vision hype and reality for delivering computing as the 5th utility. Future Gener Comput Syst 25(6):599–616

    Google Scholar 

  4. 4.

    Chen J, Wang C, Zhou BB, Sun L, Lee YC, Zomaya AY (2011) Tradeoffs between profit and customer satisfaction for service provisioning in the cloud. In: Proceedings of international symposium on high-performance parallel and distributed computing, pp 229–238

  5. 5.

    García-Valls M, Cucinotta T, Lu C (2014) Challenges in real-time virtualization and predictable cloud computing. J Syst Archit 60(9):726–740

    Google Scholar 

  6. 6.

    Bhimani J et al (2018) Docker container scheduler for I/O intensive applications running on NVMe SSDs. IEEE Trans Multi-Scale Comput Syst 4(3):313–326

    Google Scholar 

  7. 7.

    Bernstein D (2014) Containers and cloud: from LXC to Docker to Kubernetes. IEEE Cloud Comput 1(3):81–84

    Google Scholar 

  8. 8.

    Reiss C, Tumanov A, Ganger GR, Katz RH, Kozuch MA (2012) Heterogeneity and dynamicity of clouds at scale: Google trace analysis. In: ACM SoCC ’12

  9. 9.

    Delimitrou C, Kozyrakis C (2013) Paragon: Qos-aware scheduling for heterogeneous datacenters. In: ASPLOS ’13, pp 77–88

  10. 10.

    Cuomo A, Di Modica G, Distefano S, et al. (2013) An SLA-based broker for cloud infrastructures. J Grid Comput

  11. 11.

    Mei J, Li K, Ouyang A, Li K (2015) A profit maximization scheme with guaranteed quality of service in cloud computing. IEEE Trans Comput 64(11):3064–3078

    MathSciNet  MATH  Google Scholar 

  12. 12.

    Wang W, Niu D, Li B, Liang B (2013) Dynamic cloud resource reservation via cloud brokerage. In: IEEE international conference on distributed computing systems, pp 400–409

  13. 13.

    Mei J, Li K, Tong Z, Li Q, Li K (2019) Profit maximization for cloud brokers in cloud computing. IEEE Trans Parallel Distrib Syst 30(1):190–203

    Google Scholar 

  14. 14.

    Google Cluster Data. http://code.google.com/p/googleclusterdata/

  15. 15.

    Xu M, Alamro S, Lan T, Subramaniam S (2017) CRED: cloud right-sizing with execution deadlines and data locality. IEEE Trans Parallel Distrib Syst 28(12):3389–3400

    Google Scholar 

  16. 16.

    Cao J, Hwang K, Li K, Zomaya AY (2013) Optimal multiserver configuration for profit maximization in cloud computing. IEEE Trans Parallel Distrib Syst 24(6):1087–1096

    Google Scholar 

  17. 17.

    Sharma B, Chudnovsky V, Hellerstein JL, Rifaat R, Das CR (2011) Modeling and synthesizing task placement constraints in Google compute clusters. In: Proceedings of SoCC

  18. 18.

    Rogers O, Cliff D (2012) A financial brokerage model for cloud computing. J Cloud Comput 1(1):1–12

    Google Scholar 

  19. 19.

    Thinakaran P, Gunasekaran JR, Sharma B, Kandemir MT, Das CR (2017) Phoenix: a constraint-aware scheduler for heterogeneous datacenters. In: IEEE ICDCS, pp 977–987

  20. 20.

    Tao F, LaiLi Y, Xu L, Zhang L (2013) FC-PACO-RM: a parallel method for service composition optimal-selection in cloud manufacturing system. IEEE Trans Ind Inform 9(4):2023–2033

    Google Scholar 

  21. 21.

    Tao F, Cheng Y et al (2014) CCIoT-CMfg: cloud computing and internet of things-based cloud manufacturing service system. IEEE Trans Ind Inform 10(2):1435–1442

    Google Scholar 

  22. 22.

    Zheng X, Martin P, Brohman K, Xu LD (2014) Cloud service negotiation in internet of things environment: a mixed approach. IEEE Trans Ind Inform 10(2):1506–1515

    Google Scholar 

  23. 23.

    Lee YC, Wang C, Zomaya AY, Zhou BB (2012) Profit-driven scheduling for cloud services with data access awareness. J Parallel Distrib Comput 72(4):591–602

    Google Scholar 

  24. 24.

    Cachon GP, Feldman P (2010) Dynamic versus static pricing in the presence of strategic consumers

  25. 25.

    Li S, Ren S, Yu Y, Wang X, Wang L, Quan G (2012) Profit and penalty aware scheduling for real-time online services. IEEE Trans Ind Inform 8(1):78–89

    Google Scholar 

  26. 26.

    Hindman B, Konwinski A, Zaharia M, Ghodsi A, Joseph AD, Katz RH, Shenker S, Stoica I (2011) Mesos: a platform for fine-grained resource sharing in the data center. NSDI 11:22–22

    Google Scholar 

  27. 27.

    Schwarzkopf M, Konwinski A, Abd-El-Malek M, Wilkes J (2013) Omega: flexible, scalable schedulers for large compute clusters. In: Proceedings of ACM European conference on computer systems, pp 351–364

  28. 28.

    Google Mesosphere (2013) https://github.com/mesosphere

  29. 29.

    Al-Maytami BA, Fan P, Hussain A, Baker T, Liatsis P (2019) A task scheduling algorithm with improved makespan based on prediction of tasks computation time algorithm for cloud computing. IEEE Access 7:160916–160926. https://doi.org/10.1109/ACCESS.2019.2948704

    Article  Google Scholar 

  30. 30.

    Wang Y, Guo Y, Guo Z, Baker T, Liu W (2020) CLOSURE: a cloud scientific workflow scheduling algorithm based on attack-defense game model. Future Gener Comput Syst 111:460–474

    Google Scholar 

  31. 31.

    Baker T, Mackay M, Randles M, Taleb-Bendiab A (2013) Intention-oriented programming support for runtime adaptive autonomic cloud-based applications. Comput Electr Eng 39(7):2400–2412

    Google Scholar 

  32. 32.

    Baker T, Aldawsari B, Asim M, Tawfik H, Maamar Z, Buyya R (2018) Cloud-SEnergy: a bin-packing based multi-cloud service broker for energy efficient composition and execution of data-intensive applications. Sustain Comput Inform Syst 19:242–252

    Google Scholar 

  33. 33.

    Li P (2004) Utility accrual real-time scheduling: models and algorithms. Ph.D. dissertation, Virginia Polytechnic Inst. State Univ

  34. 34.

    Wang Q et al (2011) The impact of soft resource allocation on n-tier application scalability,. In: 2011 IEEE international parallel and distributed processing symposium, Anchorage, AK, pp 1034–1045

  35. 35.

    Sadjadi SM et al (2008) A modeling approach for estimating execution time of long-running scientific applications. In: IEEE international symposium on parallel and distributed processing, pp 1–8

  36. 36.

    Shimizu S, Rangaswami R, Duran-Limon HA, Corona-Perez M (2009) Platform-independent modeling and prediction of application resource usage characteristics. J Syst Softw 82(12):2117–2127

    Google Scholar 

  37. 37.

    Delimitrou C, Kozyrakis C (2014) Quasar: resource-efficient and QoS-aware cluster management. In: Proceedings of the 19th international conference on architectural support for programming languages and operating systems (ASPLOS ’14)

  38. 38.

    Delimitrou C, Kozyrakis C (2016) HCloud: resource-efficient provisioning in shared cloud systems. In: Proceedings of ASPLOS

  39. 39.

    Swain CK, Sahu A (2018) Interference aware scheduling of real time tasks in cloud environment. In: IEEE 20th international conference on high performance computing and communications; IEEE 16th international conference on smart city; IEEE 4th international conference on data science and systems (HPCC/SmartCity/DSS), Exeter, UK

  40. 40.

    Xiaoyong Y, Hongyan T, Ying L, Tong J, Tiancheng L, Zhonghai W (2015) A competitive penalty model for availability based cloud SLA. In: IEEE 8th international conference on cloud computing, pp 964–970

  41. 41.

    Baev ID, Meleis WM, Eichenberger AE (1999) Algorithms for total weighted completion time scheduling. In: Proceedings of ACM-SIAM symposium on discrete algorithms

  42. 42.

    Bertsimas D, Tsitsiklis J (1993) Simulated annealing. Stat Sci 8(1):10–15

    MATH  Google Scholar 

  43. 43.

    Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by simulated annealing. Science 220(4598):671–680

    MathSciNet  MATH  Google Scholar 

  44. 44.

    Delgado P, Didona D, Dinu F, Zwaenepoel W (2016) Job-aware scheduling in eagle: divide and stick to your probes. In: Proceedings of ACM symposium on cloud computing

  45. 45.

    Clark RK (1990) Scheduling dependent real-time activities. Ph.D. dissertation, Carnegie Mellon Univ., Pittsburgh, PA

  46. 46.

    Zhang R, Wu K, Li M, Wang J (2016) Online resource scheduling under concave pricing for cloud computing. IEEE Trans Parallel Distrib Syst 27(4):1131–1145

    Google Scholar 

  47. 47.

    Amazon EC2 SLA. https://aws.amazon.com/cn/ec2/sla

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Chinmaya Kumar Swain.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Swain, C.K., Gupta, B. & Sahu, A. Constraint aware profit maximization scheduling of tasks in heterogeneous datacenters. Computing 102, 2229–2255 (2020). https://doi.org/10.1007/s00607-020-00838-1

Download citation

Keywords

  • Datacenter
  • Cloud computing
  • Scheduling
  • Constraint
  • Profit

Mathematics Subject Classification

  • 68T20
  • 68W40
  • 68Q15
  • 97K50