Computing

, Volume 100, Issue 6, pp 597–620 | Cite as

Towards bandwidth and energy optimization in IEEE 802.15.4 wireless sensor networks

  • Mouloud Atmani
  • Djamil Aïssani
  • Yassine Hadjadj-Aoul
Article
  • 50 Downloads

Abstract

Transmission delay, throughput and energy are important criterions to consider in wireless sensor networks (WSN). In this way, IEEE 802.15.4 standard was conceived with the objective to reduce resource’s consumption in both WSN and wireless personal area networks. In such networks, the slotted CSMA/CA still occupies a prominent place as a channel control access mechanism with its inherent simplicity and reduced complexity. In this paper, we propose to introduce a network allocation vector (NAV), to reduce energy consumption and collisions in IEEE 802.15.4 networks. A Markov chain-based analytical model of the fragmentation mechanism, in a saturated traffic, is given as well as a model of the energy consumption using the NAV mechanism. The obtained results show that the fragmentation technique improves at the same time the throughput, the access delay and the bandwidth occupation. They, also, show that using the NAV allows reducing significantly the energy consumption when applying the fragmentation technique in slotted CSMA/CA under saturated traffic conditions.

Keywords

IEEE 802.15.4 Slotted CSMA/CA Data fragmentation NAV Markov chains Energy consumption Bandwidth occupation 

Mathematics Subject Classification

60J20 

References

  1. 1.
    Sohrabi K, Gao J, Ailawadhi V, Pottie GJ (1999) Protocols for self-organization of a wireless sensor network. In: 37th allerton conference on communication, computing and control, vol 7, No 5, pp 16–27Google Scholar
  2. 2.
    Lee CY, Cho HI, Hwang GU, Doh Y, Park N (2011) Performance modeling and analysis of IEEE 802.15.4 slotted CSMA/CA protocol with ACK mode. Int J Electron Commun 65(2):123–131CrossRefGoogle Scholar
  3. 3.
    IEEE Std 802.15.4. Part 15.4, Wireless medium access control (MAC) and physical layer (PHY) specifications for low-rate wireless area sensor networks (WPANs) (2003)Google Scholar
  4. 4.
    IEEE std 802.15.4, Part 15.4, Wireless medium access control (MAC) and physical layer (PHY) specifications for low-rate wireless personal area networks (WPANs) (2006)Google Scholar
  5. 5.
    Pollin S, Ergen M, Ergen SC, Bougard B, Perre LV, Moerman I, Bahai A, Varaiya P, Catthoor F (2008) Performance analysis of slotted carrier sense IEEE 802.15.4 medium access layer. IEEE Trans Wirel Commun 7(9):3359–3371CrossRefGoogle Scholar
  6. 6.
    Park P, Di Marco P, Soldati P, Fischione C, Johansson KH (2009) A generalized Markov chain model for effective analysis of slotted IEEE 802.15.4. In: IEEE 6th international conference on mobile ad hoc and sensor system (MASS), pp 130–139Google Scholar
  7. 7.
    Patro RK, Raina M, Ganapathy V, Shamaiah M, Thejaswi C (2007) Analysis and improvement of contention access protocol in IEEE 802.15.4 star network. In: The fourth IEEE international conference on mobile ad-hoc and sensor systems, Pisa, ItalyGoogle Scholar
  8. 8.
    Wong CM, Lee BH (2012) An improvement of slotted CSMA/CA algorithm in IEEE 802.15.4 medium access layer. Wirel Pers Commun 63(4):807–822CrossRefGoogle Scholar
  9. 9.
    Rehman SU, Bhatti FA, Iqbal MY, Sabir Z (2011) Modeling the impact of deferred transmission in CSMA/CA algorithm for IEEE 802.15.4 using Markov chain model. In: Multitopic conference (INMIC). 2011 IEEE 14th international, pp 334–339Google Scholar
  10. 10.
    IEEE Part 11, Wireless LAN medium access control (MAC) and physical layer (PHY) specifications. IEEE Std 802.11 (2007)Google Scholar
  11. 11.
    Yazid M, Bouallouche-Medjkoune L, Aissani D, Ziane-Khodja L (2013) Analytical analysis of applying packet fragmentation mechanism on IEEE 802.11b DCF network in non ideal channel with infinite load conditions. Wirel Netw 20(5):917–934CrossRefGoogle Scholar
  12. 12.
    Li T, Ni Q, Malone D, Leith D (2009) Aggregation with fragment retransmission for very high-speed WLANs. IEEE/ACM Trans Netw 17(2):591–604CrossRefGoogle Scholar
  13. 13.
    Yoon J, Kim H, Ko JG (2007) Data fragmentation scheme in IEEE 802.15.4 wireless sensor networks. In: IEEE 65th vehicular technology conference, Dublin, Ireland, pp 26–30Google Scholar
  14. 14.
    Atmani M, Aïssani D, Hadjadj-Aoul Y (2014) Applying data fragmentation in IEEE 802.15.4: modeling and analysis under unsaturated traffic. In: Proceedings of the VECoS’2014 [8th international workshop on verification and evaluation of computer and communication systems], Bejaia, pp 121–130. ISBN : 978-9931-9140-3-7. http://ceur-ws.org/vol-1256
  15. 15.
    Fourty N, Bossche AVD, Val T (2012) An advanced study of energy consumption in an IEEE 802.15.4 based network: everything but the truth on 802.15.4 node lifetime. Comput Commun 35(14):1759–1767CrossRefGoogle Scholar
  16. 16.
    IEEE Std 802.15.4a, Part 15.4: wireless medium access control (MAC) and physical layer (PHY) specifications for low-rate wireless personal area networks (WPANs) (2007)Google Scholar
  17. 17.
    IEEE Std 802.15.4c, Part 15.4: wireless medium access control (MAC) and physical layer (PHY) specifications for low-rate wireless personal area networks (WPANs) (2009)Google Scholar
  18. 18.
    IEEE Std 802.15.4d, Part 15.4: wireless medium access control (MAC) and physical layer (PHY) specifications for low-rate wireless personal area networks (WPANs) (2009)Google Scholar
  19. 19.
    IEEE Std 802.15.4f, Part 15.4: low-rate wireless personal area networks (LR-WPANs) (2012)Google Scholar
  20. 20.
    Rehman SU, Berber S, Swain A (2010) Performance analysis of CSMA/CA algorithm for wireless sensor network. In: TENCON 2010–2010 IEEE region 10 conference, pp 2012–2017Google Scholar
  21. 21.
    Yoon J, Kim H, Ko J-G (2007) Data fragmentation scheme in IEEE 802.15.4 wireless sensor networks. In: Vehicular technology conference, 2007. VTC2007-Spring. IEEE 65th, pp 26–30Google Scholar
  22. 22.
    Bianchi G (2000) Performance analysis of the IEEE 802.11 distributed coordination function. IEEE J Sel Areas Commun 18(3):535–547MathSciNetCrossRefGoogle Scholar
  23. 23.
    Wen H, Lin C, Chen ZJ et al (2009) An improved Markov model for IEEE 802.15.4 slotted CSMA/CA mechanism. J Comput Sci Technol 24(3):495–504CrossRefGoogle Scholar
  24. 24.
    Kohvakka M, Kuorilehto M, Hnnikinen M, Hmlinen TD (2000) Performance analysis of IEEE 802.15.4 and ZigBee for large-scale wireless sensor network applications, PE-WASUN, Malaga, SpainGoogle Scholar
  25. 25.
    Lee TJ, Lee HR, Chung MY (2006) MAC throughput limit analysis of slotted CSMA/CA in IEEE 802.15.4 WPAN. IEEE Commun Lett 10(7):561–563CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria 2017

Authors and Affiliations

  • Mouloud Atmani
    • 1
  • Djamil Aïssani
    • 1
  • Yassine Hadjadj-Aoul
    • 2
  1. 1.LaMOS Research UnitUniversity of BejaiaBejaïaAlgeria
  2. 2.IRISA LaboratoryUniversity of Rennes 1RennesFrance

Personalised recommendations