A systematic mapping on adaptive recommender approaches for ubiquitous environments

Abstract

Recommender systems were first conceived to provide suggestions of interesting items to users. The evolution of such systems provided an understanding that a recommender system is currently used to diverse objectives. One of the current challenges in the field is to have approaches of recommendation that go beyond accuracy metrics. Since it is a very recent interest of the community, this review, also characterized as an exploratory search, provides an overview of the techniques in the area that tries to look beyond accuracy. More specifically, one of the characteristics that would provide such evolution to these systems is the adaptation. This review is then performed to find the existence and characteristics of such approaches. Of the total 438 papers returned in the submission of the search string, 57 papers were analyzed after two filtering processes. The papers have shown that the area is little explored and one of the reasons is the challenge to validate non-accuracy characteristics in such approaches.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    David G, David N, Oki Brian M, Douglas T (1992) Using collaborative filtering to weave an information tapestry. Commun ACM 35(12):61–70

    Article  Google Scholar 

  2. 2.

    Herlocker Jonathan L, Konstan Joseph A, Terveen Loren G, Riedl John T (2004) Evaluating collaborative filtering recommender systems. ACM Trans Inf Syst 22(1):5–53

    Article  Google Scholar 

  3. 3.

    Jannach D, Adomavicius G (2016) Recommendations with a purpose. In: Proceedings of the 10th ACM conference on recommender systems, RecSys ’16. ACM, New York, pp 7–10

  4. 4.

    Ekstrand MD, Kluver D, Harper FM, Konstan FM (2015) Letting users choose recommender algorithms: an experimental study. In: Proceedings of the 9th ACM conference on recommender systems, RecSys ’15. ACM, New York, pp 11–18

  5. 5.

    Harper FM, Xu F, Kaur H, Condiff K, Chang K, Terveen L (2015) Putting users in control of their recommendations. In: Proceedings of the 9th ACM conference on recommender systems, RecSys ’15. ACM, New York, pp 3–10

  6. 6.

    Kapoor K, Kumar V, Terveen L, Konstan JA, Schrater P (2015) “I like to explore sometimes”: adapting to dynamic user novelty preferences. In: Proceedings of the 9th ACM conference on recommender systems, RecSys ’15. ACM, New York, pp 19–26

  7. 7.

    Puthiya Parambath SA, Usunier N, Grandvalet Y (2016) A coverage-based approach to recommendation diversity on similarity graph. In: Proceedings of the 10th ACM conference on recommender systems, RecSys ’16. ACM, New York, pp 15–22

  8. 8.

    Teo CH, Nassif H, Hill D, Srinivasan S, Goodman M, Mohan V, Vishwanathan SVN (2016) Adaptive, personalized diversity for visual discovery. In: Proceedings of the 10th ACM conference on recommender systems, RecSys ’16. ACM, New York, pp 35–38

  9. 9.

    RecSys ’16 (2016). In: Proceedings of the 10th ACM conference on recommender systems. ACM, New York

  10. 10.

    Calero Valdez A, Ziefle M, Verbert K (2016) HCI for recommender systems: the past, the present and the future. In: Proceedings of the 10th ACM conference on recommender systems, RecSys ’16. ACM, New York, pp 123–126

  11. 11.

    Brusilovsky P (2001) Adaptive hypermedia. User Model User-Adap Interact 11(1–2):87–110

    Article  MATH  Google Scholar 

  12. 12.

    Kambara JK, Machado GM, Thom LH, Wives LK (2014) Business process modeling and instantiation in home care environments. In: International conference on enterprise information systems

  13. 13.

    Machado A, Pernas AM, Augustin I, Thom LH, Krug L, Palazzo J, Oliveira MD (2013) Situation-awareness as a key for proactive actions in ambient assisted living. In: Proceedings of the 15th international conference on enterprise information systems. SciTePress—Science and and Technology Publications, pp 418–426

  14. 14.

    Takuya M, Yutaka Y, Yasushi S, Yasue K, Koji K, Takeshi O (2012) Context-aware web search in ubiquitous sensor environments. ACM Trans Internet Technol 11(3):12:1–12:23

    Google Scholar 

  15. 15.

    Otebolaku AM, Andrade MT (2015) Context-aware media recommendations for smart devices. J Ambient Intell Humaniz Comput 6(1):13–36

    Article  Google Scholar 

  16. 16.

    Yao L, Sheng QZ, Ngu AHH, Xue L (2016) Things of interest recommendation by leveraging heterogeneous relations in the internet of things. ACM Trans Internet Technol 16(2):9:1–9:25

    Article  Google Scholar 

  17. 17.

    Bagci H, Karagoz P (2015) Random walk based context-aware activity recommendation for location based social networks. In: IEEE international conference on data science and advanced analytics (DSAA), IEEE, pp 1–9. doi:10.1109/DSAA.2015.7344852

  18. 18.

    Fan X, Hu Y, Li J, Wang C (2015) Context-aware ubiquitous web services recommendation based on user location update. In: International conference on cloud computing and big data (CCBD), IEEE, pp 111–118. doi:10.1109/CCBD.2015.20

  19. 19.

    Salman Y, Abu-Issa A, Tumar I, Hassouneh Y (2015) A proactive multi-type context-aware recommender system in the environment of internet of things. In: IEEE international conference on computer and information technology; ubiquitous computing and communications; dependable, autonomic and secure computing; pervasive intelligence and computing, IEEE, pp 351–355. doi:10.1109/CIT/IUCC/DASC/PICOM.2015.50

  20. 20.

    Silva LCN, Neto FMM, Júnior L, Carvalho Muniz R (2012) Recommendation of learning objects in an ubiquitous learning environment through an agent-based approach. In: Putnik GD, Cruz-Cunha MM (eds) Virtual and networked organizations, emergent technologies and tools SE-11, volume 248 of communications in computer and information science. Springer, Berlin, pp 101–110

    Google Scholar 

  21. 21.

    Wang S-L, Chun-Yi W (2011) Application of context-aware and personalized recommendation to implement an adaptive ubiquitous learning system. Expert Syst Appl 38(9):10831–10838

    Article  Google Scholar 

  22. 22.

    Marchionini G (2006) Exploratory search: from finding to understanding. Commun ACM 49(4):41–46

    Article  Google Scholar 

  23. 23.

    Adomavicius G, Sankaranarayanan R, Sen S, Tuzhilin A (2005) Incorporating contextual information in recommender systems using a multidimensional approach. ACM Trans Inf Syst 23(1):103–145

    Article  Google Scholar 

  24. 24.

    Wasilewski J, Hurley N (2016) Intent-aware diversification using a constrained PLSA. In: Proceedings of the 10th ACM conference on recommender systems, RecSys ’16. ACM, New York, pp 39–42

  25. 25.

    Maybury MT, Brusilovsky P (2002) From adaptive hypermedia to the adaptive web. Commun ACM - Adapt Web 45(5):30–33

    Google Scholar 

  26. 26.

    Adomavicius G, Tuzhilin A (2005) Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions. IEEE Trans Knowl Data Eng 17(6):734–749

    Article  Google Scholar 

  27. 27.

    Perera C, Zaslavsky A, Christen P, Georgakopoulos D (2014) Context aware computing for the internet of things: a survey. IEEE Commun Surv Tutor 16(1):414–454

    Article  Google Scholar 

  28. 28.

    Dey AK (2001) Understanding and using context. Pers Ubiquitous Comput 5(1):4–7

    Article  Google Scholar 

  29. 29.

    Makris P, Skoutas DN, Skianis C (2013) A survey on context-aware mobile and wireless networking: on networking and computing environments’ integration. IEEE Commun Surv Tutor 15(1):362–362

    Article  Google Scholar 

  30. 30.

    Bettini C, Brdiczka O, Henricksen K, Indulska J, Nicklas D, Ranganathan A, Riboni D (2010) A survey of context modelling and reasoning techniques. Pervasive Mob Comput 6(2):161–180

    Article  Google Scholar 

  31. 31.

    Maran V, Augustin I, de Oliveira JPM (2014) Are the integrations between ontologies and databases really opening the closed world in ubiquitous computing? In: International conference on software engineering & knowledge engineering, vol 1. Knowledge Systems Institute Graduate School, pp 453–458

  32. 32.

    Riboni D, Bettini C (2012) Private context-aware recommendation of points of interest: an initial investigation. In: Pervasive computing and communications workshops (PERCOM workshops), 2012 IEEE international conference on, IEEE, pp 584–589

  33. 33.

    Weiser M (1991) The computer for the 21st century. Sci Am 265(3):94–104

    Article  Google Scholar 

  34. 34.

    Berners-Lee T, Hendler J, Lassila O (2001) The semantic web. Sci Am 284(5):28–37

    Article  Google Scholar 

  35. 35.

    Ricci F, Rokach L, Shapira B (2011) Introduction to recommender systems handbook. In: Ricci F, Rokach L, Shapira B, Kantor PB (eds) Recommender systems handbook SE-1. Springer, New York, pp 1–35

    Google Scholar 

  36. 36.

    Adomavicius G, Tuzhilin A (2011) Context-aware recommender systems. In: Ricci F, Rokach L, Shapira B, Kantor PB (eds) Recommender systems handbook SE-7. Springer, New York, pp 217–253

    Google Scholar 

  37. 37.

    Dietmar J, Markus Z, Alexander F, Gerhard F (2010) Recommender systems. Cambridge University Press, Cambridge

    Google Scholar 

  38. 38.

    Dourish P (2004) What we talk about when we talk about context. Pers Ubiquitous Comput 8(1):19–30

    Article  Google Scholar 

  39. 39.

    Mandl M, Felfernig A, Teppan E, Schubert M (2011) Consumer decision making in knowledge-based recommendation. J Intell Inf Syst 37(1):1–22

    Article  Google Scholar 

  40. 40.

    Trewin S (2000) Knowledge-based recommender systems. Encycl Libr Inf Sci 69(Supplement 32):180

    Google Scholar 

  41. 41.

    Felfernig A, Burke R (2008) Constraint-based recommender systems: technologies and research issues. In: Proceedings of the 10th international conference on electronic commerce, ACM, p 3

  42. 42.

    Tim H, Timm L, Werner G, Jürgen Z (2014) Hybreed: a software framework for developing context-aware hybrid recommender systems. User Model User-Adap Interact 24(1–2):121–174

    Google Scholar 

  43. 43.

    Quan J-C, Cho S-B (2014) A hybrid recommender system based on AHP that awares contexts with Bayesian networks for smart TV. In: Hybrid artificial intelligence systems. Springer, pp 527–536

  44. 44.

    Brusilovsky P, Su HD (2002) Adaptive visualization component of a distributed web-based adaptive educational system. In: Lecture notes in computer science, vol 2363, pp 229–238

  45. 45.

    De Bra P (2008) Adaptive hypermedia. In: Pawlowski JM, Kinshuk, Pawlowski JM, Sampson DG (eds) Handbook on information technologies for education and training. Springer, Berlin, pp 29–46

    Google Scholar 

  46. 46.

    Brusilovsky P, Millán E (2007) User models for adaptive hypermedia and adaptive educational systems. In: Brusilovsky P, Kobsa A, Nejdl W (eds) The adaptive web methods and strategies of web personalization, chapter 1. Springer, Berlin, pp 3–53

    Google Scholar 

  47. 47.

    Benouaret I, Lenne D (2015) Personalizing the museum experience through context-aware recommendations. In: IEEE international conference on systems, man, and cybernetics, IEEE, pp 743–748. doi:10.1109/SMC.2015.139

  48. 48.

    Marilza Pernas A, Diaz A, Motz R, Palazzo Moreira de Oli J (2012) Enriching adaptation in e-learning systems through a situation-aware ontology network. Interact Technol Smart Educ 9(2):60–73

    Article  Google Scholar 

  49. 49.

    Adomavicius G, Tuzhilin A (2015) Context-aware recommender systems. In: Ricci F, Rokach L, Shapira B (eds) Recommender systems handbook. Springer, Boston, pp 191–226

    Google Scholar 

  50. 50.

    Keele S (2007) Guidelines for performing systematic literature reviews in software engineering. Technical report, EBSE Technical Report EBSE-2007-01

  51. 51.

    Petersen K, Vakkalanka S, Kuzniarz L (2015) Guidelines for conducting systematic mapping studies in software engineering: an update. Inf Softw Technol 64:1–18

    Article  Google Scholar 

  52. 52.

    Bellavista P, Corradi A, Fanelli M, Foschini L (2012) A survey of context data distribution for mobile ubiquitous systems. ACM Comput Surv 44(4):1–45

    Article  Google Scholar 

  53. 53.

    Lucke U, Rensing C (2014) A survey on pervasive education. Pervasive Mob Comput 14:3–16

    Article  Google Scholar 

  54. 54.

    Mettouris C, Papadopoulos GA (2013) Ubiquitous recommender systems. Computing 96(3):223–257

    Article  Google Scholar 

  55. 55.

    Otebolaku AM, Andrade MT (2015) Context-aware media recommendations for smart devices. J Ambient Intell Humaniz Comput 6(1):13–36

    Article  Google Scholar 

  56. 56.

    Tonella P, Marco T, Du Bois B, Systä T (2007) Empirical studies in reverse engineering: state of the art and future trends. Empir Softw Eng 12(5):551–571

    Article  Google Scholar 

  57. 57.

    Parate A, Böhmer M, Chu D, Ganesan D, Marlin BM (2013) Practical prediction and prefetch for faster access to applications on mobile phones. In: Proceedings of the 2013 ACM international joint conference on pervasive and ubiquitous computing, UbiComp ’13. ACM, New York, pp 275–284

  58. 58.

    Moebert T, Zender R, Lucke U (2016) A generalized approach for context-aware adaptation in mobile e-learning settings. Springer, Cham

    Google Scholar 

  59. 59.

    Shani G, Gunawardana A (2011) Evaluating recommendation systems. In: Ricci F, Rokach L, Shapira B, Kantor PB (eds) Recommender systems handbook. Springer, Boston, pp 257–297

    Google Scholar 

  60. 60.

    Paramythis A, Weibelzahl S, Masthoff J (2010) Layered evaluation of interactive adaptive systems: framework and formative methods. User Model User-Adapt Interact 20(5):383–453

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank CNPq and CAPES, Brazil.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Guilherme M. Machado.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Machado, G.M., Maran, V., Dornelles, L.P. et al. A systematic mapping on adaptive recommender approaches for ubiquitous environments. Computing 100, 183–209 (2018). https://doi.org/10.1007/s00607-017-0572-7

Download citation

Keywords

  • Systematic mapping
  • Recommender systems (RS)
  • Adaptive systems (AS)
  • Ubiquitous computing
  • Context awareness

Mathematics Subject Classification

  • 68-02
  • 68U35
  • 68M99