Computing

, Volume 95, Supplement 1, pp 617–638 | Cite as

Non-convex systems of sets for numerical analysis

Article

Abstract

The notion of a system of sets generated by a family of functionals is introduced. A generalization of the classical support function of convex subsets of \(\mathbb R ^d\) allows to transfer the concept of the convex hull to these systems of sets. Approximation properties of the generalized convex hull and its use for practical computations are investigated.

Keywords

Numerical treatment of subsets of \(\mathbb R ^d\) Systems of sets  Over approximation of sets 

Mathematics Subject Classification (2000)

49J53 65G40 65D18 

References

  1. 1.
    Baier R (1995) Mengenwertige Integration und die diskrete Approximation erreichbarer Mengen (Set-valued integration and discrete approximation of reachable sets). Bayreuth Math Schr 50. Dissertation, Universität Bayreuth, BayreuthGoogle Scholar
  2. 2.
    Beyn WJ, Rieger J (2007) Numerical fixed grid methods for differential inclusions. Computing 81(1):91–106MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Beyn WJ, Rieger J (2012) Galerkin finite element methods for semilinear elliptic differential inclusions. To appear in DCDS-BGoogle Scholar
  4. 4.
    Dellnitz M, Hohmann A (1997) A subdivision algorithm for the computation of unstable manifolds and global attractors. Numerische Mathematik 75:293–317MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Dellnitz M, Junge O (2002) Set oriented numerical methods for dynamical systems. In: Fiedler B (ed) Handbook of dynamical systems, vol 2. North-Holland, Amsterdam, pp 221–264Google Scholar
  6. 6.
    Giga Y (2006) Surface evolution equations. A level set approach. Monographs in Mathematics, vol 99. Birkhäuser, BaselGoogle Scholar
  7. 7.
    Harrach B, Seo JK (2010) Exact shape-reconstruction by one-step linearization in electrical impedance tomography. SIAM J Math Anal 42(4):1505–1518MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Haslinger J, Mäkinen RAE (2003) Introduction to shape optimization. Theory, approximation, and computation. Advances in design and control, vol 7. Society for Industrial and Applied Mathematics (SIAM), PhiladelphiaGoogle Scholar
  9. 9.
    Moore RE, Baker Kearfott R, Cloud M (2009) Introduction to interval analysis. Society for Industrial and Applied Mathematics, PhiladelphiaMATHCrossRefGoogle Scholar
  10. 10.
    Osher S, Fedkiw R (2003) Level set methods and dynamic implicit surfaces. In: Applied mathematical sciences, vol 153. Springer, New YorkGoogle Scholar
  11. 11.
    Rieger J (2011) Discretizations of linear elliptic partial differential inclusions. Numer Funct Anal Optim 32(8):904–925MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Rockafellar RT (1970) Convex analysis. In: Princeton mathematical series, vol 28. Princeton University Press, PrincetonGoogle Scholar

Copyright information

© Springer-Verlag Wien 2012

Authors and Affiliations

  1. 1.J.W. Goethe-UniversitätFrankfurt am MainGermany

Personalised recommendations