Energy-efficient data centers

Abstract

Energy consumption of the Information and Communication Technology (ICT) sector has grown exponentially in recent years. A major component of the today’s ICT is constituted by the data centers which have experienced an unprecedented growth in their size and population, recently. The Internet giants like Google, IBM and Microsoft house large data centers for cloud computing and application hosting. Many studies, on energy consumption of data centers, point out to the need to evolve strategies for energy efficiency. Due to large-scale carbon dioxide (\(\mathrm{CO}_2\)) emissions, in the process of electricity production, the ICT facilities are indirectly responsible for considerable amounts of green house gas emissions. Heat generated by these densely populated data centers needs large cooling units to keep temperatures within the operational range. These cooling units, obviously, escalate the total energy consumption and have their own carbon footprint. In this survey, we discuss various aspects of the energy efficiency in data centers with the added emphasis on its motivation for data centers. In addition, we discuss various research ideas, industry adopted techniques and the issues that need our immediate attention in the context of energy efficiency in data centers.

This is a preview of subscription content, log in to check access.

Fig. 1

Notes

  1. 1.

    http://www.openflowswitch.org.

  2. 2.

    http://www.cisco.com/web/go/netflow.

  3. 3.

    http://tinyurl.com/ygcupdc.

  4. 4.

    http://code.google.com/p/google-summer-of-code-2009-oar/.

  5. 5.

    http://grouper.ieee.org/groups/802/3/az.

  6. 6.

    http://standards.ieee.org/getieee802/download/802.3-2008_section2.pdf.

  7. 7.

    http://grouper.ieee.org/groups/802/3/az.

  8. 8.

    http://www.intel.com/ial/powermgm/specs.html.

  9. 9.

    http://aws.amazon.com/ec2/.

  10. 10.

    http://xen.org/.

  11. 11.

    http://hadoop.apache.org/.

  12. 12.

    http://www.ieee802.org/1/pages/802.1ah.html.

  13. 13.

    http://www.isi.edu/nsnam/ns/l.

  14. 14.

    http://www.isi.edu/nsnam/nam/l.

References

  1. 1.

    Brown R (2007) Report to congress on server and data center energy efficiency public law 109–431. Environ Prot 109:431

    Google Scholar 

  2. 2.

    Bolla R, Davoli F, Bruschi R, Christensen K, Cucchietti F, Singh S (2011) The potential impact of green technologies in next-generation wireline networks: is there room for energy saving optimization? IEEE Commun Mag 49(8):80–86

    Article  Google Scholar 

  3. 3.

    Webb M (2008) SMART 2020: Enabling the low carbon economy in the information age. Tech. rep, Climate Group on behalf of the Global eSustainability Initiative (GeSI)

  4. 4.

    Koomey JG (2008) Worldwide electricity used in data centers. Environ Res Lett 3(3):1–8 (IOPscience)

    Google Scholar 

  5. 5.

    Masanet E, Brown R, Shehabi A, Koomey J, Nordman B (2011) Estimating the energy use and efficiency potential of U.S. data centers. Proc IEEE 99(8):1440–1453

    Article  Google Scholar 

  6. 6.

    Raghavendra R, Ranganathan P, Talwar V, Wang Z, Zhu X (2008) No power struggles: coordinated multi-level power management for the data center. SIGOPS Oper Syst Rev 42(2):48–59

  7. 7.

    Gupta M, Singh S (2003) Greening of the internet. In ACM SIGCOMM

  8. 8.

    Gupta M, Singh S (2007) Using low-power modes for energy conservation in ethernet lans. In: 26th IEEE international conference on computer communications, INFOCOM 2007, pp 2451–2455

  9. 9.

    Bolla R, Bruschi R, Lombardo C, Suino D (2011) Evaluating the energy-awareness of future internet devices. In: IEEE 12th international conference on high performance switching and routing (HPSR), 2011, pp 36–43

  10. 10.

    Zeadally S, Khan S, Chilamkurti N. (2011) Energy-efficient networking: past, present, and future. J Supercomput, pp 1–26. doi:10.1007/s11227-011-0632-2

  11. 11.

    Kliazovich D, Bouvry P, Audzevich Y, Khan S (2010) Greencloud: a packet-level simulator of energy-aware cloud computing data centers. In: IEEE conference on global telecommunications, 2010, GLOBECOM 2010, pp 1–5

  12. 12.

    Greenberg A, Hamilton JR, Jain N, Kandula S, Kim C, Lahiri P, Maltz DA, Patel P, Sengupta S (2009) Vl2: a scalable and flexible data center network. In: Proceedings of the ACM SIGCOMM 2009 conference on data communication, SIGCOMM ’09. ACM, New York, pp 51–62

  13. 13.

    Kliazovich D, Bouvry P, Khan S (2010) Dens: data center energy-efficient network-aware scheduling. In: Green computing and communications (GreenCom), 2010 IEEE/ACM international conference on and international conference on Cyber, physical and social computing (CPSCom), pp 69–75

  14. 14.

    Chen D, Henis E, Kat RI, Sotnikov D, Cappiello C, Ferreira AM, Pernici B, Vitali M, Jiang T, Liu J, Kipp A (2011) Usage centric green performance indicators. SIGMETRICS Perform Eval Rev 39(3), pp 92–96. doi:10.1145/2160803.2160868

  15. 15.

    Hoelzle U, Barroso LA (2009) The datacenter as a computer: an introduction to the design of warehouse-scale machines. Morgan and Claypool Publishers, San Rafael. http://www.morganclaypool.com/doi/pdf/10.2200/s00193ed1v01y200905cac006

  16. 16.

    Chernicoff D (2009) The shortcut guide to data center energy efficiency. Realtime Publisher, New York. http://nexus.realtimepublishers.com/sgdcee.php?ref=gbooks

  17. 17.

    Valentini GL, Lassonde W, Khan SU, Min-Allah N, Madani SA, Li J, Zhang L, Wang L, Ghani N, Kolodziej J et al (2011) An overview of energy efficiency techniques in cluster computing systems. Clust Comput. doi:10.1007/s10586-011-0171-x

  18. 18.

    Liu J, Zhao F, Liu X, He W (2009) Challenges towards elastic power management in internet data centers. In: 29th IEEE international conference on distributed computing systems workshops, 2009, ICDCS workshops ’09, pp 65–72

  19. 19.

    Benini L, Bogliolo A, De Micheli G (2000) A survey of design techniques for system-level dynamic power management. In: IEEE transactions on very large scale integration (VLSI) systems, 8(3), pp 299–316

  20. 20.

    Mastroleon L, Bambos N, Kozyrakis C, Economou D (2005) Automatic power management schemes for internet servers and data centers. In: IEEE global telecommunications conference, 2005, GLOBECOM ’05, p 5

  21. 21.

    Khargharia B, Hariri S, Szidarovszky F, Houri M, El-Rewini H, Khan S, Ahmad I, Yousif M (2007) Autonomic power performance management for large-scale data centers. In: IEEE international symposium on parallel and distributed processing symposium, IPDPS 2007, pp 1–8

  22. 22.

    Jiang N, Parashar M (2009) Enabling autonomic power-aware management of instrumented data centers. In: IEEE international symposium on parallel distributed processing, IPDPS 2009, pp 1–8

  23. 23.

    Heller B, Seetharaman S, Mahadevan P, Yiakoumis Y, Sharma P, Banerjee S, Mckeown N (2010) Elastictree: saving energy in data center networks. In: Proceedings of the 7th USENIX conference on networked systems design and implementation (NSDI’10). USENIX Association, Berkeley, CA

  24. 24.

    Da Costa G, Gelas JP, Georgiou Y, Lefevre L, Orgerie AC, Pierson JM, Richard O, Sharma K (2009) The green-net framework: energy efficiency in large scale distributed systems. In: IEEE international symposium on parallel distributed processing, 2009, IPDPS 2009, pp 1–8

  25. 25.

    Cappello F, Caron E, Dayde M, Desprez F, Jegou Y, Primet P, Jeannot E, Lanteri S, Leduc J, Melab N, Mornet G, Namyst R, Quetier B, Richard O (2005) Grid’5000: a large scale and highly reconfigurable grid experimental testbed. In: The 6th IEEE/ACM international workshop on grid computing, p 8

  26. 26.

    Gunaratne C, Christensen K, Nordman B, Suen S (2008) Reducing the energy consumption of ethernet with adaptive link rate (alr). IEEE Trans Comput 57(4):448–461

    MathSciNet  Article  Google Scholar 

  27. 27.

    Nedevschi S, Popa L, Iannaccone G, Ratnasamy S, Wetherall D (2008) Reducing network energy consumption via sleeping and rate-adaptation. In: Proceedings of the 5th USENIX symposium on networked systems design and implementation, NSDI’08. USENIX Association, Berkeley, pp 323–336

  28. 28.

    Bianzino AP, Chaudet C, Rossi D, Rougier JL (2010) A survey of green networking research. CoRR. arXiv:1010.3880v1

  29. 29.

    Bilal K, Khan S, Nasro-Min-Allah Madani S, Hayat K, Khan MI, Kolodziej J, Wang L, Zeadally S (2012) A survey on green communications using adaptive link rate, to cluster computing. J Clust Comput, pp 1–15. doi:10.1007/s10586-012-0225-8

  30. 30.

    Anand H, Reardon C, Subramaniyan R, George A (2006) Ethernet adaptive link rate (alr): Analysis of a mac handshake protocol. In: Proceedings of the 31st IEEE conference on local computer networks, 2006, pp 533–534

  31. 31.

    Gupta M, Grover S, Singh S (2004) A feasibility study for power management in lan switches. In: Proceedings of the 12th IEEE international conference on network protocols, 2004, ICNP 2004, pp 361–371

  32. 32.

    Gupta M, Singh S (2007) Dynamic ethernet link shutdown for energy conservation on ethernet links. In: IEEE international conference on communications, 2007, ICC ’07, pp 6156–6161

  33. 33.

    Gunaratne C, Christensen K, Suen S (2006) Ethernet adaptive link rate (alr): analysis of a buffer threshold policy. In: Proceedings of IEEE GLOBECOM

  34. 34.

    Meisner D, Gold BT, Wenisch TF (2009) Powernap: eliminating server idle power. SIGPLAN Not 44:205–216

    Article  Google Scholar 

  35. 35.

    Horvath T, Abdelzaher T, Skadron K, Liu X (2007) Dynamic voltage scaling in multitier web servers with end-to-end delay control. IEEE Trans Comput 56(4):444–458

    MathSciNet  Article  Google Scholar 

  36. 36.

    Pouwelse J, Langendoen K, Sips H (2001) Energy priority scheduling for variable voltage processors. In: International symposium on low-power electronics and design, pp 28–33

  37. 37.

    Bianchini R, Rajamony R (2004) Power and energy management for server systems. Computer 37(11):68–76

    Article  Google Scholar 

  38. 38.

    Shang L, Peh LS, Jha N (2003) Dynamic voltage scaling with links for power optimization of interconnection networks. In: Proceedings of the 9th international symposium on high-performance computer architecture, 2003, HPCA-9 2003, pp 91–102

  39. 39.

    Sherwood R, Gibb G, Yap KK, Appenzeller G, Casado M, McKeown N, Parulkar G (2009) Flowvisor: a network virtualization layer. Tech. rep., Deutsche Telekom Inc. R&D Lab, Stanford University, Nicira Networks

  40. 40.

    Voorsluys W, Broberg J, Venugopal S, Buyya R (2009) Cost of virtual machine live migration in clouds: a performance evaluation. In: Proceedings of the 1st international conference on cloud computing, CloudCom ’09. Springer-Verlag, Berlin, Heidelberg, pp 254–265

  41. 41.

    Meng X, Pappas V, Zhang L (2010) Improving the scalability of data center networks with traffic-aware virtual machine placement. In: Proceedings of IEEE INFOCOM, 2010, pp 1–9

  42. 42.

    Stage A, Setzer T (2009) Network-aware migration control and scheduling of differentiated virtual machine workloads. In: Proceedings of the 2009 ICSE workshop on software engineering challenges of cloud computing, CLOUD ’09. IEEE Computer Society, Washington, DC, pp 9–14

  43. 43.

    Beloglazov A, Buyya R (2010) Energy efficient resource management in virtualized cloud data centers. In: 10th IEEE/ACM international conference on cluster, cloud and grid computing (CCGrid), 2010, pp 826–831

  44. 44.

    Kusic D, Kephart J, Hanson J, Kandasamy N, Jiang G (2008) Power and performance management of virtualized computing environments via lookahead control. In: International conference on autonomic computing, 2008. ICAC ’08, pp 3–12

  45. 45.

    Wang G, Ng TSE (2010) The impact of virtualization on network performance of amazon ec2 data center. In: Proceedings of the 29th conference on information communications, INFOCOM’10, pp 1163–1171. IEEE Press, Piscataway. http://dl.acm.org/citation.cfm?id=1833515.1833691

  46. 46.

    Sommers J, Barford P, Duffield N, Ron A (2005) Improving accuracy in end-to-end packet loss measurement. In: Proceedings of the 2005 conference on applications, technologies, architectures, and protocols for computer communications, SIGCOMM ’05. ACM, New York, pp 157–168

  47. 47.

    Wang L, Khan S, Dayal J (2011) Thermal aware workload placement with task-temperature profiles in a data center. J Supercomput 61:780–803

    Google Scholar 

  48. 48.

    Abbasi Z, Varsamopoulos G, Gupta SKS (2010) Thermal aware server provisioning and workload distribution for internet data centers. In: Proceedings of the 19th ACM international symposium on high performance distributed computing, HPDC ’10. ACM, New York, pp 130–141

  49. 49.

    Banerjee A, Mukherjee T, Varsamopoulos G, Gupta S (2010) Cooling-aware and thermal-aware workload placement for green hpc data centers. In: International conference on green computing, 2010, pp 245–256

  50. 50.

    Parolini L, Sinopoli B, Krogh BH, Wang Z (2011) A cyber-physical systems approach to data center modeling and control for energy efficiency. Proc IEEE 99:1–15

    Article  Google Scholar 

  51. 51.

    Wang Z, Tolia N, Bash C (2010) Opportunities and challenges to unify workload, power, and cooling management in data centers. In: Proceedings of the 5th international workshop on feedback control implementation and design in computing systems and networks, FeBiD ’10. ACM, New York, pp 1–6

  52. 52.

    Wang L, von Laszewski G, Huang F, Dayal J, Frulani T, Fox G (2011) Task scheduling with ann-based temperature prediction in a data center: a simulation-based study. Eng Comput (Lond) 27(4):381–391

    Google Scholar 

  53. 53.

    Wang L, Fu C (2010) Research advances in modern cyberinfrastructure. N Gener Comput 28:111–112

    Article  Google Scholar 

  54. 54.

    Wang L, von Laszewski G, Kunze M, Tao J (2010) Cloud computing: a perspective study. N Gener Comput 28(2):137–146

    MATH  Article  Google Scholar 

  55. 55.

    Chen G, He W, Liu J, Nath S, Rigas L, Xiao L, Zhao F (2008) Energy-aware server provisioning and load dispatching for connection-intensive internet services. In: Proceedings of the 5th USENIX symposium on networked systems design and implementation, NSDI’08. USENIX Association, Berkeley, pp 337–350

  56. 56.

    Le K, Bianchini R, Martonosi M, Nguyen T (2009) Cost-and energy-aware load distribution across data centers. In: Proceedings of HotPower, Citeseer

  57. 57.

    Valancius V, Laoutaris N, Massoulié L, Diot C, Rodriguez P (2009) Greening the internet with nano data centers. In: Proceedings of the 5th international conference on emerging networking experiments and technologies, CoNEXT ’09. ACM, New York, pp 37–48

  58. 58.

    Vrbsky S, Lei M, Smith K, Byrd J (2010) Data replication and power consumption in data grids. In: IEEE 2nd international conference on cloud computing technology and science (CloudCom), 2010, pp 288–295

  59. 59.

    Berral JL, In Goiri, Nou R, Julià F, Guitart J, Gavaldà R, Torres J (2010) Towards energy-aware scheduling in data centers using machine learning. In: Proceedings of the 1st international conference on energy-efficient computing and networking, e-Energy ’10. ACM, New York, pp 215–224

  60. 60.

    Joanna Koloodziej SUK, Xhafa F (2011) Genetic algorithms for energy-aware scheduling in computational grids. In: 6th IEEE international conference on P2P, parallel, grid, cloud, and, internet computing (3PGCIC)

  61. 61.

    Khan S, Min-Allah N (2011) A goal programming based energy efficient resource allocation in data centers. J Supercomput, pp 1–18. doi:10.1007/s11227-011-0611-7

  62. 62.

    Khan S, Ahmad I (2009) A cooperative game theoretical technique for joint optimization of energy consumption and response time in computational grids. IEEE Trans Parallel Distributed Sys 20(3): 346–360

    Google Scholar 

  63. 63.

    Buyya R, Beloglazov A, Abawajy JH (2010) Energy-efficient management of data center resources for cloud computing: a vision, architectural elements, and open challenges. CoRR abs/1006.0308. arXiv:1006.0308v1

  64. 64.

    Cisco (2007) Cisco data center infrastructure 2.5 design guide. Cisco press

  65. 65.

    Dean J, Ghemawat S (2008) Mapreduce: simplified data processing on large clusters. Commun ACM 51:107–113

    Article  Google Scholar 

  66. 66.

    Guo C, Wu H, Tan K, Shi L, Zhang Y, Lu S (2008) Dcell: a scalable and fault-tolerant network structure for data centers. In: Proceedings of the ACM SIGCOMM 2008 conference on data communication, SIGCOMM ’08. ACM, New York, pp 75–86

  67. 67.

    Guo C, Lu G, Li D, Wu H, Zhang X, Shi Y, Tian C, Zhang Y, Lu S (2009) Bcube: a high performance, server-centric network architecture for modular data centers. SIGCOMM Comput Commun Rev 39(4):63–74

    Article  Google Scholar 

  68. 68.

    Greenberg A, Lahiri P, Maltz DA, Patel P, Sengupta S (2008) Towards a next generation data center architecture: scalability and commoditization. In: Proceedings of the ACM workshop on programmable routers for extensible services of tomorrow, PRESTO ’08. ACM, New York, pp 57–62

  69. 69.

    Al-Fares M, Loukissas A, Vahdat A (2008) A scalable, commodity data center network architecture. SIGCOMM Comput Commun Rev 38:63–74

    Article  Google Scholar 

  70. 70.

    Niranjan Mysore R, Pamboris A, Farrington N, Huang N, Miri P, Radhakrishnan S, Subramanya V, Vahdat A (2009) Portland: a scalable fault-tolerant layer 2 data center network fabric. SIGCOMM Comput Commun Rev 39:39–50

    Article  Google Scholar 

  71. 71.

    Bilal K, Khan Samee U, Kolodziej J, Zhang L, Madani SA, Min-Allah N, Wang L, Chen D (2010) A comparative study of data center network architectures. In: 26th EUROPEAN conference on modelling and simulation, ECMS 2012

  72. 72.

    Popa L, Ratnasamy S, Iannaccone G, Krishnamurthy A, Stoica I (2010) A cost comparison of datacenter network architectures. In: Proceedings of the 6th international conference, Co-NEXT ’10, pp 16:1–16:12. ACM, New York

  73. 73.

    Chiaraviglio L, Matta I (2010) Greencoop: cooperative green routing with energy-efficient servers. In: Proceedings of the 1st international conference on energy-efficient computing and networking, e-Energy ’10. ACM, New York, pp 191–194

  74. 74.

    Al-fares M, Radhakrishnan S, Raghavan B, Huang N, Vahdat A (2010) Hedera: Dynamic flow scheduling for data center networks. In: Proceedings of networked systems design and implementation (NSDI) symposium

  75. 75.

    Raiciu C, Barre S, Pluntke C, Greenhalgh A, Wischik D, Handley M (2011) Improving datacenter performance and robustness with multipath tcp. SIGCOMM Comput Commun Rev 41:266–277

    Article  Google Scholar 

  76. 76.

    Alizadeh M, Greenberg A, Maltz DA, Padhye J, Patel P, Prabhakar B, Sengupta S, Sridharan M (2010) Data center tcp (dctcp). SIGCOMM Comput Commun Rev 40:63–74

    Article  Google Scholar 

  77. 77.

    Wu H, Feng Z, Guo C, Zhang Y (2010) Ictcp: Incast congestion control for tcp in data center networks. In: Proceedings of the 6th international conference, Co-NEXT ’10, pp 13:1–13:12. ACM, New York

  78. 78.

    Shang Y, Li D, Xu M (2010) Energy-aware routing in data center network. In: Proceedings of the 1st ACM SIGCOMM workshop on Green networking, Green Networking ’10. ACM, New York, pp 1–8

  79. 79.

    Gamal AE, Nair R, Prabhakar B, Uysal-biyikoglu E, Zahedi S (2002) Energy-efficient scheduling of packet transmissions over wireless networks. In: Proceedings of the INFOCOM conference, pp 1773–1783

  80. 80.

    Heller B, Erickson D, McKeown N, Griffith R, Ganichev I, Whyte S, Zarifis K, Moon D, Shenker S, Stuart S (2010) Ripcord: a modular platform for data center networking. SIGCOMM Comput Commun Rev 41:457–458

    Article  Google Scholar 

  81. 81.

    Lim SH, Sharma B, Nam G, Kim EK, Das C (2009) Mdcsim: A multi-tier data center simulation, platform. In: IEEE international conference on cluster computing and workshops, 2009. CLUSTER ’09, pp 1–9

  82. 82.

    Buyya R, Ranjan R, Calheiros R (2009) Modeling and simulation of scalable cloud computing environments and the cloudsim toolkit: challenges and opportunities. In: International Conference on high performance computing simulation, 2009. HPCS ’09, pp 1–11

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Khizar Hayat.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Shuja, J., Madani, S.A., Bilal, K. et al. Energy-efficient data centers. Computing 94, 973–994 (2012). https://doi.org/10.1007/s00607-012-0211-2

Download citation

Keywords

  • Energy efficiency
  • Data centers
  • Causal data

Mathematics Subject Classification

  • 68-02