Skip to main content
Log in

The OTIS hyper hexa-cell optoelectronic architecture

  • Published:
Computing Aims and scope Submit manuscript

Abstract

Optical transpose interconnection system (OTIS) is an optoelectronic architecture that promises to be a great choice for future-generation parallel systems. OTIS combines the advantages of electronic and optical links, where electronic links are used for short distances which require low material cost, and optical links are used for long distances which provide high speed network with low power consumption. Taking into account the advantageous characteristics of OTIS and based on the attractive properties of hyper hexa-cell (HHC) interconnection topology from low diameter and good minimum node degree, this paper introduces a new optoelectronic architecture referred to as OTIS hyper hexa-cell (OHHC). This paper also provides an evaluation and a comparison of the new topology with OTIS-mesh in terms of the following topological properties: size, diameter, maximum and minimum node degree, bisection width, total cost and optical cost. The results of this study proved the excellence of the proposed OHHC over OTIS-mesh in terms of diameter, minimum node degree, bisection width, and optical cost.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. El-Rewini H, Abd-El-Barr M (2005) Advanced computer architecture and parallel processing. Wiley, New York

    Google Scholar 

  2. Grama A, Gupta A, Karypis G, Kumar V (2003) Introduction to parallel computing. Addison Wesley, Reading

    Google Scholar 

  3. Patterson D, Hennessy J (2009) Computer organization and design: the hardware/software interface. Morgan Kaufmann, Boston

    MATH  Google Scholar 

  4. Chen Y-J, Horng S-J (1997) Medial axis transform on mesh-connected computers with hyperbus broadcasting. Computing 59(2): 95–114

    Article  MathSciNet  MATH  Google Scholar 

  5. Verdoscia L, Vaccaro R (1999) An adaptive routing algorithm for WK-recursive topologies. Computing 63(2): 171–184

    Article  MathSciNet  MATH  Google Scholar 

  6. Marsden G, Marchand P, Harvey P, Esener S (1993) Optical transpose interconnection system architecture. Opt Lett 18(13): 1083–1085

    Article  Google Scholar 

  7. Zane F, Marchand P, Paturi R, Esener S (2000) Scalable network architectures using the optical transpose interconnection system (OTIS). J Parallel Distrib Comput 60(5): 521–538

    Article  MATH  Google Scholar 

  8. Day K, Al-Ayyoub A (2002) Topological properties of OTIS-networks. IEEE Trans Parallel Distrib Syst 13(4): 359–366

    Article  Google Scholar 

  9. Parhami B (2005) Swapped interconnection networks: topological, performance, and robustness attributes. J Parallel Distrib Comput 65(11): 1443–1452

    Article  MATH  Google Scholar 

  10. Coudert D, Ferreira A, Muñoz X (2000) Topologies for optical interconnection networks based on the optical transpose interconnection system. Appl Opt 39(17): 2965–2974

    Article  Google Scholar 

  11. Melhem R (2007) Low diameter interconnections for routing in high-performance parallel systems. IEEE Trans Comput 56(4): 502–510

    Article  MathSciNet  Google Scholar 

  12. Sahni S, Wang C-F (1997) BPC permutations on the OTIS-mesh optoelectronic computer. In: Proc 4th int conf on massively parallel processing using optical interconnections (MPPOI’97), Montreal, Canada, 22–24 June, pp 130–135

  13. Hashemi-Najafabadi H, Sarbazi-Azad H (2005) An empirical comparison of OTIS-mesh and OTIS-hypercube multicomputer systems under deterministic routing. In: Proc 19th IEEE int parallel and distributed processing symposium (IPDPS’05), Washington, DC, USA, 4–8 April, p 262a

  14. Rajasekeran S, Sahni S (1998) Randomized routing, selection, and sorting on the OTIS-mesh. IEEE Trans Parallel Distrib Syst 9(9): 833–840

    Article  Google Scholar 

  15. Lucas K, Jana P (2010) Sorting and routing on OTIS-mesh of trees. Parallel Process Lett 20(2): 145–154

    Article  MathSciNet  Google Scholar 

  16. Lucas K (2010) Parallel enumeration sort on OTIS-hypercube. IC3 (1):21–31

  17. Lucas K (2009) Parallel algorithm for sorting on OTIS-ring of computer. In: Proc of the 2nd Bangalore annual compute conference (COMPUTE ’09), Bangalore, India, 9–10 January. ACM, New York, pp 1–5

  18. Lucas K, Jana P (2010) Parallel algorithms for finding polynomial roots on OTIS-torus. J Supercomput 54(2): 139–153

    Article  MathSciNet  Google Scholar 

  19. Lucas K, Mallick D, Jana P (2008) Parallel algorithm for conflict graph on OTIS-triangular array. In: Lecture notes in computer science, vol 4904. Springer, Heidelberg, pp 274–279

  20. Lucas K (2009) Parallel algorithm for prefix computation on OTIS k-ary n-cube parallel computer. Int J Recent Trends Eng 1(1): 560–562

    Google Scholar 

  21. Wang C-F (1998) Algorithms for the OTIS optoelectronic computer. PhD thesis, Department of Computer Science, University of Florida, Florida, USA

  22. Wang C-F, Sahni S (1998) Basic operations on the OTIS-mesh optoelectronic computer. IEEE Trans Parallel Distrib Syst 9(12): 1226–1236

    Article  Google Scholar 

  23. Wang C-F, Sahni S (2001) Matrix multiplication on the OTIS-mesh optoelectronic computer. IEEE Trans Comput 50(7): 635–646

    Article  Google Scholar 

  24. Mahafzah B, Jaradat B (2008) The load balancing problem in OTIS-hypercube interconnection networks. J Supercomput 46(3): 276–297

    Article  Google Scholar 

  25. Zhao C, Xiao W, Parhami B (2009) Load-balancing on swapped or OTIS networks. J Parallel Distrib Comput 69(4): 389–399

    Article  Google Scholar 

  26. Mahafzah B, Tahboub R, Tahboub O (2010) Performance evaluation of broadcast and global combine operations in all-port wormhole-routed OTIS-mesh interconnection networks. Clust Comput 13(1): 87–110

    Article  Google Scholar 

  27. Hashemi-Najafabadi H, Sarbazi-Azad H (2007) Mathematical performance modelling of adaptive wormhole routing in optoelectronic hypercubes. J Parallel Distrib Comput 67(9): 967–980

    Article  MATH  Google Scholar 

  28. Abdullah M, Abuelrub E, Mahafzah B (2011) The chained-cubic tree interconnection network. Int Arab J Inf Technol 8(3): 334–343

    Google Scholar 

  29. Day K, Tripathi A (1994) A comparative study of topological properties of hypercubes and star graphs. IEEE Trans Parallel Distrib Syst 5(1): 31–38

    Article  MathSciNet  Google Scholar 

  30. Latifi S, Zheng S-Q (1995) Determination of Hamiltonian cycles in cube-based networks using generalized gray codes. Comput Electr Eng 21(3): 189–199

    Article  Google Scholar 

  31. Mahafzah B, Jaradat B (2010) The hybrid dynamic parallel scheduling algorithm for load balancing on chained-cubic tree interconnection networks. J Supercomput 52(3): 224–252

    Article  Google Scholar 

  32. Saad Y, Schultz M (1988) Topological properties of hypercubes. IEEE Trans Comput 37(7): 867–872

    Article  Google Scholar 

  33. Hayes J, Mudge T, Stout Q, Colley S, Palmer J (1986) Architectures of a hypercube supercomputer. In: Proc 1986 int conf on parallel processing (ICPP’86), PA, USA, August. IEEE Computer Society Press, pp 653–660

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Basel A. Mahafzah.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mahafzah, B.A., Sleit, A., Hamad, N.A. et al. The OTIS hyper hexa-cell optoelectronic architecture. Computing 94, 411–432 (2012). https://doi.org/10.1007/s00607-011-0177-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00607-011-0177-5

Keywords

Mathematics Subject Classification (2000)

Navigation