Skip to main content
Log in

Aligning the representation and reality of computation with asynchronous logic automata

  • Published:
Computing Aims and scope Submit manuscript


There are many models of computation, but they all share the same underlying laws of physics. Software can represent physical quantities, but is not itself written with physical units. This division in representations, dating back to the origins of computer science, imposes increasingly heroic measures to maintain the fiction that software is executed in a virtual world. I consider instead an alternative approach, representing computation so that hardware and software are aligned at all levels of description. By abstracting physics with asynchronous logic automata I show that this alignment can not only improve scalability, portability, and performance, but also simplify programming and expand applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others


  1. Margolus N (1984) Physics-like models of computation. Phys D 10: 81–95

    Article  MathSciNet  Google Scholar 

  2. Lloyd S (2000) Ultimate physical limits to computation. Nature 406: 1047–1054

    Article  Google Scholar 

  3. Turing AM (1950) Computing machinery and intelligence. Mind 59: 433–560

    Article  MathSciNet  Google Scholar 

  4. von Neumann J (1993) First draft of a report on the EDVAC. IEEE Ann Hist Comput 15(4): 27–75

    Article  MathSciNet  MATH  Google Scholar 

  5. Lewis HR, Papadimitriou CH (1997) Elements of the theory of computation, 2nd edn. Prentice Hall PTR, Upper Saddle River

    Google Scholar 

  6. Chaitin G (2008) The halting probability via Wang tiles. Fundam Inf 86(4):429–433.

    Google Scholar 

  7. Turing A (1952) The chemical basis of morphogenesis. Phil Trans R Soc Lond B 237: 37–72

    Article  Google Scholar 

  8. von Neumann J (1956) Probabilistic logics and the synthesis of reliable organisms from unreliable components. In: Shannon C, McCarthy J (eds) Automata studies. Princeton University Press, Princeton, pp 43–98

    Google Scholar 

  9. Banks RE (1971) Information processing and transmission in cellular automata. PhD thesis, MIT

  10. Omohundro S (1984) Modelling cellular automata with partial differential equations. Phys D: Nonlinear Phenom 10(1–2): 128–134

    Article  MathSciNet  Google Scholar 

  11. Toffoli T, Margolus N (1991) Cellular automata machines: a new environment for modeling. MIT Press, Cambridge

    Google Scholar 

  12. Lee FPJ, Adachi S, Mashiko S (2005) Delay-insensitive computation in asynchronous cellular automata. J Comput Syst Sci 70: 201–220

    Article  MathSciNet  MATH  Google Scholar 

  13. Manohar R (2006) Reconfigurable asynchronous logic. In: Proceedings of the IEEE custom integrated circuits conference, pp 13–20

  14. Dalrymple DA, Gershenfeld N, Chen K (2008) Asynchronous logic automata. In: Proceedings of AUTOMATA 2008, pp 313–322

  15. Petri CA (1996) Nets, time and space. Theor Comput Sci 153: 3–48

    Article  MathSciNet  MATH  Google Scholar 

  16. Arvind , Culler DE (1986) Dataflow architectures. Annu Rev Comput Sci 1: 225–253

    Article  Google Scholar 

  17. Nowick SM, Josephs MB, van Berkel CH (1999) Special issue on asynchronous circuits and systems. Proc IEEE 87(2): 219–222

    Article  Google Scholar 

  18. Abelson H, Allen D, Coore D, Hanson C, Homsy G, Knight TF Jr, Nagpal R, Rauch E, Sussman GJ, Weiss R (2000) Amorphous computing. Commun ACM 43: 74–82

    Article  Google Scholar 

  19. Butera WJ (2002) Programming a paintable computer. PhD thesis, MIT

  20. Younan X, Whitesides GM (1998) Soft lithography. Annu Rev Mater Sci 28: 153–184

    Article  Google Scholar 

  21. Ridley B, Nivi B, Jacobson J (1999) All-inorganic field effect transistors fabricated by printing. Science 286: 746–749

    Article  Google Scholar 

  22. Bennett CH (1973) Logical reversibility of computation. IBM J Res Dev 17: 525

    Article  MATH  Google Scholar 

  23. Margolus NH (1999) Crystalline computation. In: Hey A (ed) Feynman and computation. Perseus Books, Cambridge

    Google Scholar 

  24. Greenwald S (2010) Matrix multiplication with asynchronous logic automata. Master’s thesis, MIT

  25. Gershenfeld N, Dalrymple D, Chen K, Knaian A, Green F, Demaine ED, Greenwald S, Schmidt-Nielsen P (2010) Reconfigurable asynchronous logic automata: (RALA). In: Proceedings of the 37th Annual ACM SIGPLAN-SIGACT symposium on principles of programming languages, POPL ’10, New York, NY, USA. ACM, pp 1–6

  26. Ballard G, Demmel J, Holtz O, Schwartz O (2009) Minimizing communication in linear algebra. CoRR, abs/0905.2485

  27. Chen K, Green F, Greenwald S, Bachrach J, Gershenfeld N (2011) Asynchronous logic automata asic design (preprint)

  28. Green F (2010) ALA ASIC: a standard cell library for asynchronous logic automata. Master’s thesis, MIT

  29. Grabert, H, Devoret, MH (eds) (1992) Single charge tunneling: Coulomb Blockade phenomena in nanostructures. Plenum Press, New York

    Google Scholar 

  30. Tanji-Suzuki H, Chen W, Landig R, Simon J, Vuleti V (2011) Vacuum-induced transparency. Science 333(6047): 1266–1269

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Neil Gershenfeld.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gershenfeld, N. Aligning the representation and reality of computation with asynchronous logic automata. Computing 93, 91–102 (2011).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


Mathematics Subject Classification (2000)