Advertisement

Computing

, Volume 90, Issue 3–4, pp 165–196 | Cite as

A generic interface for parallel and adaptive discretization schemes: abstraction principles and the Dune-Fem module

  • Andreas DednerEmail author
  • Robert Klöfkorn
  • Martin Nolte
  • Mario Ohlberger
Article

Abstract

Starting from an abstract mathematical notion of discrete function spaces and operators, we derive a general abstraction for a large class of grid-based discretization schemes for stationary and instationary partial differential equations. Special emphasis is put on concepts for local adaptivity and parallelization with dynamic load balancing. The concepts are based on a corresponding abstract definition of a parallel and hierarchical adaptive grid given in Bastian et al. (Computing 82(2–3):103–119, 2008). Based on the abstract framework, we describe an efficient object oriented implementation of a generic interface for grid-based discretization schemes that is realized in the Dune-Fem library (http://dune.mathematik.uni-freiburg.de). By using interface classes we manage to separate functionality from data structures. Efficiency is obtained by using modern template based generic programming techniques, including static polymorphism, the engine concept, and template metaprogramming. We present numerical results for several benchmark problems and some advanced applications.

Keywords

DUNE Partial differential equations Finite elements Finite volumes Discontinuous Galerkin Software Abstract interface Generic programming C++ Parallelization Adaptive methods Dynamic load balancing 

Mathematics Subject Classification (2000)

65M60 65Y05 68U20 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abdelaziz Y, Hamouine A (2008) A survey of the extended finite element. Comput Struct 86(11–12): 1141–1151CrossRefGoogle Scholar
  2. 2.
    Arnold DN, Brezzi F, Cockburn B, Marini LD (2002) Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J Numer Anal 39(5): 1749–1779zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Bangerth W, Hartmann R, Kanschat G (2007) deal.II—a general-purpose object-oriented finite element library. ACM Trans Math Softw 33(4):24, 27Google Scholar
  4. 4.
    Bastian P, Birken K, Johannsen K, Lang S, Neuss N, Rentz-Reichert H, Wieners C (1997) UG—a flexible software toolbox for solving partial differential equations. Comput Visual Sci 1: 27–40zbMATHCrossRefGoogle Scholar
  5. 5.
    Bastian P, Blatt M, Dedner A, Engwer C, Klöfkorn R, Kornhuber R, Ohlberger M, Sander O (2008) A generic grid interface for parallel and adaptive scientific computing. II: Implementation and tests in dune. Computing 82(2–3): 121–138zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Bastian P, Blatt M, Dedner A, Engwer C, Klöfkorn R, Ohlberger M, Sander O (2008) A generic grid interface for parallel and adaptive scientific computing. I: Abstract framework. Computing 82 (2–3): 103–119zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Blatt M, Bastian P (2007) The iterative solver template library. In: Kagström B, Elmroth E, Dongarra J, Wasniewski J (eds) Applied parallel computing—state of the art in scientific computing. Springer, Berlin, pp 666–675CrossRefGoogle Scholar
  8. 8.
    Brenner SC, Ridgway Scott L (2008) The mathematical theory of finite element methods. In: Texts in applied mathematics, 3rd edn, vol 15. Springer, New YorkGoogle Scholar
  9. 9.
    Brezzi F, Fortin M (1991) Mixed and hybrid finite element methods. Springer, BerlinzbMATHGoogle Scholar
  10. 10.
    Burri A, Dedner A, Diehl D, Klöfkorn R, Ohlberger M (2006) A general object oriented framework for discretizing nonlinear evolution equations. In: Shokin YI, Resch M, Danaev N, Orunkhanov M, Shokina N (eds) Advances in high performance computing and computational sciences. Notes on numerical fluid mechanics and multidiciplinary design (NNFM), vol 93. Springer, BerlinGoogle Scholar
  11. 11.
    Burri A, Dedner A, Klöfkorn R, Ohlberger M (2006) An efficient implementation of an adaptive and parallel grid in dune. In: Krause E, Shokin YI, Resch M, Shokina N (eds) Advances in high performance computing and computational sciences. Notes on numerical fluid mechanics adn multidisciplinary design (NNFM), vol 91. Springer, BerlinGoogle Scholar
  12. 12.
    Castillo P, Rieben R, White D (2005) FEMSTER: an object-oriented class library of high-order discrete differential forms. ACM Trans Math Softw 31(4): 425–457zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Ciarlet PG (1987) The finite element methods for elliptic problems. North-Holland, AmsterdamGoogle Scholar
  14. 14.
    Cockburn B, Shu C-W (2001) Runge-Kutta discontinuous Galerkin methods for convection-dominated problems. J Sci Comput 16(3): 173–261zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Davis TA (2004) Algorithm 832: UMFPACK v4.3—an unsymmetric-pattern multifrontal method. ACM Trans Math Softw 30(2): 196–199zbMATHCrossRefGoogle Scholar
  16. 16.
    Dedner A, Klöfkorn R (2008) A generic stabilization approach for higher order Discontinuous Galerkin methods for convection dominated problems. Preprint no. 8. Submitted to SIAM Sci. Comput. Mathematisches Institut, Unversität Freiburg. http://www.mathematik.uni-freiburg.de/IAM/homepages/robertk/postscript/dedner_kloefkorn_limiter.pdf
  17. 17.
    Dedner A, Luethi M, Albrecht T, Vetter T (2007) Curvature guided level set registration using adaptive finite elements. In: Hamprecht F, Schnorr C, Jahne B (eds) Proceedings of the 29th annual symposium of the German association for pattern recognition. Springer, BerlinGoogle Scholar
  18. 18.
    Dedner A, Rohde C, Schupp B, Wesenberg M (2004) A parallel, load balanced mhd code on locally adapted, unstructured grids in 3d. Comput Visual Sci 7: 79–96zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Diehl D (2007) Higher order schemes for simulation of compressible liquid-vapor flows with phase change. PhD thesis, Universität Freiburg. http://www.freidok.uni-freiburg.de/volltexte/3762/
  20. 20.
    Dune Fem Dune-Fem—The FEM Module. http://dune.mathematik.uni-freiburg.de/
  21. 21.
    Eymard R, Galluoët T, Herbin R (2000) Finite volume methods. In: Handbook of numerical analysis, vol VII. North-Holland, Amsterdam, pp 713–1020Google Scholar
  22. 22.
    Gerbeau J-F, Perthame B (2001) Derivation of viscous Saint–Venant system for laminar shallow water; numerical validation. Discrete Contin Dyn Syst Ser B 1(1): 89–102zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Gersbacher C (2008) Local Discontiunous Galerkin Verfahren zur Simulation flacher dreidimensionaler Strömungen mit freier Oberfläche. Diploma thesis, Universität FreiburgGoogle Scholar
  24. 24.
    Haasdonk B, Ohlberger M (2008) Reduced basis method for finite volume approximations of parametrized linear evolution equations. M2AN Math Model Numer Anal 42(2): 277–302zbMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Henning P, Ohlberger M (2009) Advection diffusion problems with rapidly oscillating coefficients and large expected drift. Part 2: The heterogeneous multiscale finite element method. Technical report, University of Münster (to be submitted)Google Scholar
  26. 26.
    Karypis G, Kumar V (1999) A fast and highly quality multilevel scheme for partitioning irregular graphs. SIAM J Sci Comput 20(1): 359–392zbMATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Karypis G, Kumar V (1999) Multilevel k-way partitioning scheme for irregular graphs. SIAM Rev 41(2): 278–300zbMATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Kröner D (1997) Numerical schemes for conservation laws. Wiley, StuttgartzbMATHGoogle Scholar
  29. 29.
    Lehn ML (2008) FLENS A flexible library for efficient numerical solutions. PhD thesis, Fakultät für Mathematik und Wirtschaftswissenschaften, Universität Ulm. http://flens.sourceforge.net/
  30. 30.
    Leveque RJ (2002) Finite volume methods for hyperbolic problems. In: Cambridge texts in applied mathematics. Cambridge University Press, CambridgeGoogle Scholar
  31. 31.
    Patera AT, Rozza G (2007) Reduced Basis approximation and a posteriori error estimation for parametrized partial differential equations. MIT, Version 1.0, Copyright MIT 2006-2007. In: (tentative rubric) MIT Pappalardo Graduate Monographs in Mechanical Engineering (to appear)Google Scholar
  32. 32.
    Schmidt A, Siebert KG (2005) Design of adaptive finite element software—the finite element toolbox ALBERTA. Springer, BerlinzbMATHGoogle Scholar
  33. 33.
    Veldhuizen T The object-oriented numerics page. http://www.oonumerics.org/oon/

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Andreas Dedner
    • 1
    Email author
  • Robert Klöfkorn
    • 1
  • Martin Nolte
    • 1
  • Mario Ohlberger
    • 2
  1. 1.University of FreiburgFreiburgGermany
  2. 2.University of MünsterMünsterGermany

Personalised recommendations