Skip to main content
Log in

Local projection stabilisation on S-type meshes for convection–diffusion problems with characteristic layers

  • Published:
Computing Aims and scope Submit manuscript

Abstract

Singularly perturbed convection–diffusion problems with exponential and characteristic layers are considered on the unit square. The discretisation is based on layer-adapted meshes. The standard Galerkin method and the local projection scheme are analysed for bilinear and higher order finite element where enriched spaces were used. For bilinears, first order convergence in the ε-weighted energy norm is shown for both the Galerkin and the stabilised scheme. However, supercloseness results of second order hold for the Galerkin method in the ε-weighted energy norm and for the local projection scheme in the corresponding norm. For the enriched \({\mathcal{Q}_p}\)-elements, p ≥ 2, which already contain the space \({\mathcal{P}_{p+1}}\), a convergence order p + 1 in the ε-weighted energy norm is proved for both the Galerkin method and the local projection scheme. Furthermore, the local projection methods provides a supercloseness result of order p + 1 in local projection norm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Apel T (1999) Anisotropic finite elements: local estimates and applications. In: Advances in numerical mathematics. B. G. Teubner, Stuttgart

  2. Bakhvalov NS (1969) The optimization of methods of solving boundary value problems with a boundary layer. U.S.S.R. Comput Math Math Phys 9(4): 139–166

    Article  MathSciNet  Google Scholar 

  3. Becker R, Braack M (2001) A finite element pressure gradient stabilization for the Stokes equations based on local projections. Calcolo 38(4): 173–199

    Article  MATH  MathSciNet  Google Scholar 

  4. Becker R, Braack M (2004) A two-level stabilization scheme for the Navier–Stokes equations. In: Feistauer M, Dolejší V, Knobloch P, Najzar K (eds) Numerical mathematics and advanced applications. Springer, Berlin, pp 123–130

    Google Scholar 

  5. Braack M, Burman E (2006) Local projection stabilization for the Oseen problem and its interpretation as a variational multiscale method. SIAM J Numer Anal 43(6): 2544–2566

    MATH  MathSciNet  Google Scholar 

  6. Brenner SC, Scott LR (2002) The mathematical theory of finite element methods. In: Texts in applied mathematics, vol 15, 2nd edn. Springer, New York

  7. Davis TA (2004) Algorithm 832: UMFPACK V4.3—an unsymmetric-pattern multifrontal method. ACM Trans Math Softw 30(2): 196–199

    Article  MATH  Google Scholar 

  8. Davis TA (2004) A column pre-ordering strategy for the unsymmetric-pattern multifrontal method. ACM Trans Math Softw 30(2): 167–195

    Google Scholar 

  9. Davis TA, Duff IS (1997) An unsymmetric-pattern multifrontal method for sparse LU factorization. SIAM J Matrix Anal Appl 18(1): 140–158

    Article  MATH  MathSciNet  Google Scholar 

  10. Davis TA, Duff IS (1999) A combined unifrontal/multifrontal method for unsymmetric sparse matrices. ACM Trans Math Softw 25(1): 1–20

    Article  MATH  MathSciNet  Google Scholar 

  11. Franz S (2008) Continuous interior penalty method on a shishkin mesh for convection–diffusion problems with characteristic boundary layers. Comput Methods Appl Mech Eng 197(45–48): 3679–3686

    Article  MathSciNet  Google Scholar 

  12. Franz S (2008) Singularly perturbed problems with characteristic layers: Supercloseness and postprocessin. PhD thesis, Department of Mathematics, TU Dresden

  13. Franz S, Linß T, Roos H-G (2008) Superconvergence analysis of the SDFEM for elliptic problems with characteristic layers. Appl Numer Math 58(12): 1818–1829

    Article  MATH  MathSciNet  Google Scholar 

  14. Hughes TJR, Brooks AN (1979) A multidimensional upwind scheme with no crosswind diffusion. In: Finite element methods for convection dominated flows (Papers, Winter Ann. Meeting Amer. Soc. Mech. Engrs., New York, 1979). AMD, vol 34, pp 19–35. Amer. Soc. Mech. Engrs. (ASME), New York

  15. John V, Matthies G (2004) MooNMD—a program package based on mapped finite element methods. Comput Vis Sci 6(2–3): 163–170

    MATH  MathSciNet  Google Scholar 

  16. Kellogg RB, Stynes M (2005) Sharpened and corrected version of: Corner singularities and boundary layers in a simple convection–diffusion problem. J Differ Equ 213(1): 81–120

    Article  MATH  MathSciNet  Google Scholar 

  17. Kellogg RB, Stynes M (2007) Sharpened bounds for corner singularities and boundary layers in a simple convection–diffusion problem. Appl Math Lett 20(5): 539–544

    Article  MATH  MathSciNet  Google Scholar 

  18. Linß T, Stynes M (2001) Numerical methods on Shishkin meshes for linear convection–diffusion problems. Comput Methods Appl Mech Eng 190(28): 3527–3542

    Article  MATH  Google Scholar 

  19. Linß T (1999) An upwind difference scheme on a novel Shishkin-type mesh for a linear convection–diffusion problem. J Comput Appl Math 110(1): 93–104

    Article  MATH  MathSciNet  Google Scholar 

  20. Linß T (2000) Analysis of a Galerkin finite element method on a Bakhvalov-Shishkin mesh for a linear convection–diffusion problem. IMA J Numer Anal 20(4): 621–632

    Article  MATH  MathSciNet  Google Scholar 

  21. Linß T, Stynes M (2001) Asymptotic analysis and Shishkin-type decomposition for an elliptic convection–diffusion problem. J Math Anal Appl 261(2): 604–632

    Article  MATH  MathSciNet  Google Scholar 

  22. Matthies G (2009) Local projection methods on layer-adapted meshes for higher order discretisations of convection–diffusion problems. Appl Numer Math 59: 2515–2533

    Article  MATH  MathSciNet  Google Scholar 

  23. Matthies G (2009) Local projection stabilisation for higher order discretisations of convection–diffusion problems on Shishkin meshes. Adv Comput Math 30: 315–337

    Article  MATH  MathSciNet  Google Scholar 

  24. Matthies G, Skrzypacz P, Tobiska L (2007) A unified convergence analysis for local projection stabilisations applied to the Oseen problem. M2AN Math Model Numer Anal 41(4): 713–742

    Article  MATH  MathSciNet  Google Scholar 

  25. Miller JJH, O’Riordan E, Shishkin GI (1996) Fitted numerical methods for singular perturbation problems: error estimates in the maximum norm for linear problems in one and two dimensions. World Scientific, River Edge

    MATH  Google Scholar 

  26. Roos H-G, Linß T (1999) Sufficient conditions for uniform convergence on layer-adapted grids. Computing 63(1): 27–45

    Article  MATH  MathSciNet  Google Scholar 

  27. Roos H-G, Stynes M, Tobiska L (2008) Numerical methods for singularly perturbed differential equations. Springer, Berlin

    MATH  Google Scholar 

  28. Stynes M, O’Riordan E (1997) A uniformly convergent Galerkin method on a Shishkin mesh for a convection–diffusion problem. J Math Anal Appl 214(1): 36–54

    Article  MATH  MathSciNet  Google Scholar 

  29. Stynes M, Tobiska L (2003) The SDFEM for a convection–diffusion problem with a boundary layer: optimal error analysis and enhancement of accuracy. SIAM J Numer Anal 41(5): 1620–1642

    Article  MATH  MathSciNet  Google Scholar 

  30. Stynes M, Tobiska L (2008) Using rectangular Q p elements in the SDFEM for a convection–diffusion problem with a boundary layer. Appl Numer Math 58(12): 1709–1802

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Franz.

Additional information

Communicated by C.C. Douglas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Franz, S., Matthies, G. Local projection stabilisation on S-type meshes for convection–diffusion problems with characteristic layers. Computing 87, 135–167 (2010). https://doi.org/10.1007/s00607-010-0079-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00607-010-0079-y

Keywords

Mathematics Subject Classification (2000)

Navigation