Skip to main content
Log in

Local and singularity-free G 1 triangular spline surfaces using a minimum degree scheme

  • Published:
Computing Aims and scope Submit manuscript

Abstract

We develop a scheme for constructing G 1 triangular spline surfaces of arbitrary topological type. To assure that the scheme is local and singularity-free, we analyze the selection of scalar weight functions and the construction of the boundary curve network in detail. With the further requirements of interpolating positions, normals, and surface curvatures, we show that the minimum degree of such a triangular spline surface is 6. And we present a method for constructing boundary curves network, which consists of cubic Bézier curves. To deal with certain singular cases, the base mesh must be locally subdivided and we proposed an adaptive subdivision strategy for it. An application of our G 1 triangular spline surfaces to the approximation of implicit surfaces is described. The visual quality of this scheme is demonstrated by some examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bloomenthal J (1994) An implicit surface polygonizer. In: Graphics gems IV, Academic Press, San Diego, pp 324–349

  2. Boehm W, Prautzsch H, Arner P (1987) On triangular splines. Constr Approx 3: 157–167

    Article  MATH  MathSciNet  Google Scholar 

  3. de Boor C, Höllig K (1982) B-splines from parallelepipeds. J d’Anal Math 42: 99–115

    Article  Google Scholar 

  4. de Boor C, Höllig K, Sabin MA (1987) High accuracy geometric Hermite interpolation. Comp Aided Geom Des 4(4): 269–278

    Article  MATH  Google Scholar 

  5. Cho DY, Lee KY, Kim TW (2006) Interpolating G 1 Bézier surfaces over irregular curve networks for ship hull design. Comp Aided Des 38(6): 641–660

    Article  Google Scholar 

  6. Cho DY, Lee KY, Kim TW (2007) Analysis and avoidance of singularities for local G 1 surface interpolation of Bézier curve network with 4-valent nodes. Computing 79(2–4): 261–279

    Article  MATH  MathSciNet  Google Scholar 

  7. Du WH, Schmitt FJM (1990) On the G 1 continuity of piecewise Bézier surfaces: a review with new results. Comp Aided Des 22(9): 556–573

    Article  MATH  Google Scholar 

  8. Farin G (1985) A modified clough-tocher interpolant. Comp Aided Geom Des 2(1–3): 19–27

    Article  MATH  MathSciNet  Google Scholar 

  9. Farin G (2002) Curves and surfaces for CAGD: a practical guide, chap 20, 5th edn. Morgan Kaufmann, San Francisco

  10. Fünfzig C, Müller K, Hansford D, Farin G (2008) PNG1 triangles for tangent plane continuous surfaces on the GPU. In: GI’08: Proceedings of graphics interface 2008, pp 219–226

  11. Garland M, Heckbert PS (1997) Surface simplification using quadric error metrics. In: Proceedings of ACM SIGGRAPH 1997, computer graphics proceedings. Annual conference series, pp 209–216

  12. Garland M, Zhou Y (2005) Quadric-based simplification in any dimension. ACM Trans Graph 24(2): 209–239

    Article  Google Scholar 

  13. Hagen H, Pottmann H (1989) Curvature continuous triangular interpolants. In: Mathematical methods in computer aided geometric design, Academic Press, San Diego, pp 373–384

  14. Hahmann S, Bonneau GP (2000) Triangular G 1 interpolation by 4-splitting domain triangles. Comp Aided Geom Des 17(8): 731–757

    Article  MATH  MathSciNet  Google Scholar 

  15. Hoschek J, Lasser D (1993) Fundamentals of computer aided geometric design. AK Peters, Massachusetts

  16. Jensen T (1987) Assembling triangular and rectangular patches and multivariate splines. In: Farin G (ed) Geometric modeling: algorithms and new trends, SIAM, Philadelphia, pp 203–220

  17. Liu Y, Mann S (2008) Paramteric triangular Bézier surface interpolation with approximate continuity. In: SMP’08: Proceedings of the 2008 ACM symposium on solid and physical modeling, pp 381–387

  18. Loop C (1994) A G 1 triangular spline surface of arbitrary topological type. Comp Aided Geom Des 11(3): 303–330

    Article  MATH  MathSciNet  Google Scholar 

  19. Mann S, Loop C, Lounsbery M, Meyers D, Painter J, DeRose T, Sloan K (1992) A survey of parametric scattered data fitting using triangular interpolants. In: Hagen H (ed) Curve and surface design, SIAM, Philadelphia, pp 145–172

  20. Neamtu M, Pfluger PR (1994) Degenerate polynomial patches of degree 4 and 5 used for geometrically smooth interpolation in \({\mathbb{R}^3}\). Comp Aided Geom Des 11(4): 451–474

    Article  MATH  MathSciNet  Google Scholar 

  21. Nielson G (1987) A transfinite, visually continuous, triangular interpolant. In: Farin G (ed) Geometric modeling: algorithms and new trends, SIAM, Philadelphia, pp 235–246

  22. Nocedal J, Wright S (1999) Numerical Optimization. Springer, New York

    Book  MATH  Google Scholar 

  23. Patrikalakis NM, Maekawa T (2000) Shape interrogation for computer aided design and manufacturing, chap 8. Springer, Berlin

  24. Peters J (1991) Smooth interpolation of a mesh of curves. Constr Approx 7(1): 221–246

    Article  MATH  MathSciNet  Google Scholar 

  25. Peters J (1995) Biquartic C 1-surface splines over irregular meshes. Comp Aided Des 27(12): 895–903

    Article  Google Scholar 

  26. Peters J (1995) C 1-surface splines. SIAM J Numer Anal 32(2): 645–666

    Article  MATH  MathSciNet  Google Scholar 

  27. Peters J (2002) Geometric continuity. In: Farin G, Hoschek J, Kim MS (eds) Handbook of computer aided geometric design, Elsevier, Amsterdam, pp 193–227

  28. Sabin M (1969) Conditions for continuity of surface normal between adjacent parametric surface. Tech. rep. VTO/MS/151, Dynamics and Maths Services Department, British Aircraft Corporation

  29. Sabin M (1976) The use of piecewise forms of the numerical representation of shapes. Ph.D. thesis, Hungarian Academy of Sciences, Budapest, Hungary

  30. Sabin M (2002) Subdivison surfaces. In: Farin G, Hoschek J, Kim MS (eds) Handbook of computer aided geometric design, Elsevier, Amsterdam, pp 309–326

  31. Schaback R (1998) Optimal geometric Hermite interpolation of curves. In: Proceedings of the international conference on mathematical methods for curves and surfaces II, pp 417–428

  32. Tong WH, Kim TW (2009) High-order approximation of implicit surfaces by G 1 triangular spline surfaces. Comput Aided Des 41(6): 441–445

    Article  Google Scholar 

  33. Warren J, Weimer H (2001) Subdivision methods for geometric design: a constructive approach. Morgan Kaufmann, San Francisco

  34. Watkins MA (1988) Problems in geometric continuity. Comp Aided Des 20(8): 499–502

    Article  Google Scholar 

  35. Yvart A, Hahmann S, Bonneau GP (2005) Hierarchical triangular splines. ACM Trans Graph 24(4): 1374–1391

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tae-wan Kim.

Additional information

Communicated by C.H. Cap.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tong, Wh., Kim, Tw. Local and singularity-free G 1 triangular spline surfaces using a minimum degree scheme. Computing 86, 235–255 (2009). https://doi.org/10.1007/s00607-009-0056-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00607-009-0056-5

Keywords

Mathematics Subject Classification (2000)

Navigation